BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3593870)

  • 1. The lateral distribution of pyrene-labeled sphingomyelin and glucosylceramide in phosphatidylcholine bilayers.
    Hresko RC; Sugár IP; Barenholz Y; Thompson TE
    Biophys J; 1987 May; 51(5):725-33. PubMed ID: 3593870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study.
    Hresko RC; Sugár IP; Barenholz Y; Thompson TE
    Biochemistry; 1986 Jul; 25(13):3813-23. PubMed ID: 3741837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers.
    Ollmann M; Schwarzmann G; Sandhoff K; Galla HJ
    Biochemistry; 1987 Sep; 26(18):5943-52. PubMed ID: 3676298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles. A probe for membrane organization.
    Chong PL; Thompson TE
    Biophys J; 1985 May; 47(5):613-21. PubMed ID: 4016182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucocerebroside transfer between phosphatidylcholine bilayers.
    Correa-Freire MC; Barenholz Y; Thompson TE
    Biochemistry; 1982 Mar; 21(6):1244-8. PubMed ID: 7074080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin.
    Holopainen JM; Metso AJ; Mattila JP; Jutila A; Kinnunen PK
    Biophys J; 2004 Mar; 86(3):1510-20. PubMed ID: 14990478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers.
    Barenholz Y; Cohen T; Haas E; Ottolenghi M
    J Biol Chem; 1996 Feb; 271(6):3085-90. PubMed ID: 8621705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I.
    McKeone BJ; Pownall HJ; Massey JB
    Biochemistry; 1986 Nov; 25(23):7711-6. PubMed ID: 3099835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E/M dips. Evidence for lipids regularly distributed into hexagonal super-lattices in pyrene-PC/DMPC binary mixtures at specific concentrations.
    Tang D; Chong PL
    Biophys J; 1992 Oct; 63(4):903-10. PubMed ID: 1420934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1-Palmitoyl-2-pyrenedecanoyl glycerophospholipids as membrane probes: evidence for regular distribution in liquid-crystalline phosphatidylcholine bilayers.
    Somerharju PJ; Virtanen JA; Eklund KK; Vainio P; Kinnunen PK
    Biochemistry; 1985 May; 24(11):2773-81. PubMed ID: 4027225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers.
    Bar LK; Barenholz Y; Thompson TE
    Biochemistry; 1997 Mar; 36(9):2507-16. PubMed ID: 9054556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parinaroyl and pyrenyl phospholipids as probes for the lipid surface layer of human low density lipoproteins.
    Vauhkonen M; Somerharju P
    Biochim Biophys Acta; 1989 Aug; 984(1):81-7. PubMed ID: 2765542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the main transition of dinervonoylphosphocholine liposomes by fluorescence spectroscopy.
    Metso AJ; Mattila JP; Kinnunen PK
    Biochim Biophys Acta; 2004 May; 1663(1-2):222-31. PubMed ID: 15157624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study.
    Sassaroli M; Ruonala M; Virtanen J; Vauhkonen M; Somerharju P
    Biochemistry; 1995 Jul; 34(27):8843-51. PubMed ID: 7612625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral diffusivity of lipid analogue excimeric probes in dimyristoylphosphatidylcholine bilayers.
    Sassaroli M; Vauhkonen M; Perry D; Eisinger J
    Biophys J; 1990 Feb; 57(2):281-90. PubMed ID: 2317550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid lateral organization in synthetic membranes as monitored by pyrene-labeled phospholipids: effects of temperature and prothrombin fragment 1 binding.
    Jones ME; Lentz BR
    Biochemistry; 1986 Feb; 25(3):567-74. PubMed ID: 3754153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dipyrenylphosphatidylcholines as membrane fluidity probes. Relationship between intramolecular and intermolecular excimer formation rates.
    Vauhkonen M; Sassaroli M; Somerharju P; Eisinger J
    Biophys J; 1990 Feb; 57(2):291-300. PubMed ID: 2317551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular interactions of lysobisphosphatidic acid with phosphatidylcholine in mixed bilayers.
    Holopainen JM; Söderlund T; Alakoskela JM; Säily M; Eriksson O; Kinnunen PK
    Chem Phys Lipids; 2005 Jan; 133(1):51-67. PubMed ID: 15589226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.