These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3593870)

  • 21. Partitioning of pyrene-labeled phospho- and sphingolipids between ordered and disordered bilayer domains.
    Koivusalo M; Alvesalo J; Virtanen JA; Somerharju P
    Biophys J; 2004 Feb; 86(2):923-35. PubMed ID: 14747328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of unsaturation and curvature on the transverse distribution of intramolecular dynamics of dipyrenyl lipids.
    Cheng KH; Somerharju P
    Biophys J; 1996 May; 70(5):2287-98. PubMed ID: 9172752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y; Cohen T; Korenstein R; Ottolenghi M
    Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers.
    Schram V; Lin HN; Thompson TE
    Biophys J; 1996 Oct; 71(4):1811-22. PubMed ID: 8889158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes.
    Ruocco MJ; Shipley GG
    Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement.
    Parry MJ; Hagen M; Mouritsen OG; Kinnunen PK; Alakoskela JM
    Langmuir; 2010 Apr; 26(7):4909-15. PubMed ID: 20180577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the vesicular stomatitis virus matrix protein on the lateral organization of lipid bilayers containing phosphatidylglycerol: use of fluorescent phospholipid analogues.
    Wiener JR; Pal R; Barenholz Y; Wagner RR
    Biochemistry; 1985 Dec; 24(26):7651-8. PubMed ID: 3004559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lateral diffusion of gramicidin S, M-13 coat protein and glycophorin in bilayers of saturated phospholipids. Mean field and Monte Carlo studies.
    Pink DA; Lookman T; MacDonald AL; Zuckermann MJ; Jan N
    Biochim Biophys Acta; 1982 Apr; 687(1):42-56. PubMed ID: 6176272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanism of lateral diffusion of py(10)-PC and free pyrene in fluid DMPC bilayers.
    Martins J; Melo E
    Biophys J; 2001 Feb; 80(2):832-40. PubMed ID: 11159450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micropolarities of lipid bilayers and micelles. 5. Localization of pyrene in small unilamellar phosphatidylcholine vesicles.
    L'Heureux GP; Fragata M
    Biophys Chem; 1988 Jul; 30(3):293-301. PubMed ID: 3207848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optical study of the exchange kinetics of membrane bound molecules.
    Sengupta P; Sackmann E; Kühnle W; Scholz HP
    Biochim Biophys Acta; 1976 Jul; 436(4):869-78. PubMed ID: 952921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes.
    Galla HJ; Hartmann W; Theilen U; Sackmann E
    J Membr Biol; 1979 Jul; 48(3):215-36. PubMed ID: 40032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synchrotron X-ray diffraction characterization of the structure of complexes formed between sphingomyelin and cerebroside.
    Quinn PJ
    FEBS J; 2011 Sep; 278(18):3518-27. PubMed ID: 21794092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pressure effects on the physical properties of lipid bilayers detected by trans-parinaric acid fluorescence decay.
    Reyes Mateo C; Tauc P; Brochon JC
    Biophys J; 1993 Nov; 65(5):2248-60. PubMed ID: 8298048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid phase states influence glycophorin reconstitution.
    MacDonald RI
    Biochim Biophys Acta; 1980 Mar; 597(1):189-92. PubMed ID: 7370244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The affinity of cholesterol for phosphatidylcholine and sphingomyelin.
    Lange Y; D'Alessandro JS; Small DM
    Biochim Biophys Acta; 1979 Oct; 556(3):388-98. PubMed ID: 486469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partitioning of perfluorooctanoate into phosphatidylcholine bilayers is chain length-independent.
    Xie W; Bothun GD; Lehmler HJ
    Chem Phys Lipids; 2010 Mar; 163(3):300-8. PubMed ID: 20096277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of cholesterol on the ethanol-induced interdigitated gel phase in phosphatidylcholine: use of fluorophore pyrene-labeled phosphatidylcholine.
    Komatsu H; Rowe ES
    Biochemistry; 1991 Mar; 30(9):2463-70. PubMed ID: 2001373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.