These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35938901)

  • 1. Sequentially Regulating the Structural Transformation of Copper Metal-Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction.
    Qin Q; Wang D; Shao Z; Zhang Y; Zhang Q; Li X; Huang C; Mi L
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36845-36854. PubMed ID: 35938901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO
    Yan T; Wang P; Sun WY
    Small; 2023 Mar; 19(10):e2206070. PubMed ID: 36538751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton Conducting Metal-Organic Frameworks (MOFs) via Post Synthetic Transmetallation and Water Induced Structural Transformations.
    Goswami A; Ghorai A; Pal D; Banerjee S; Biradha K
    Chemistry; 2024 Sep; 30(49):e202402165. PubMed ID: 38925585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Framework (MOF)-Based Materials as Heterogeneous Catalysts for C-H Bond Activation.
    Liu M; Wu J; Hou H
    Chemistry; 2019 Feb; 25(12):2935-2948. PubMed ID: 30264533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination-Induced N-H Bond Splitting of Ammonia and Primary Amine of Cu
    Gao K; Huang C; Qiao Y; Wang S; Wu J; Hou H
    Chemistry; 2021 Jul; 27(37):9499-9502. PubMed ID: 33998739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic Metal-Organic Framework Derived Cu Catalyst for Selective CO
    Wen CF; Yang S; He JJ; Niu Q; Liu PF; Yang HG
    Small; 2024 Nov; 20(46):e2405051. PubMed ID: 39092657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Logic in Metal-Organic Frameworks for Catalysis.
    Shen Y; Pan T; Wang L; Ren Z; Zhang W; Huo F
    Adv Mater; 2021 Nov; 33(46):e2007442. PubMed ID: 34050572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected "Spontaneous" Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles.
    Yang Y; Zhang X; Kanchanakungwankul S; Lu Z; Noh H; Syed ZH; Farha OK; Truhlar DG; Hupp JT
    J Am Chem Soc; 2020 Dec; 142(50):21169-21177. PubMed ID: 33269913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the enzymatic inhibition performance of Cu-based metal-organic frameworks by shortening the organic ligands.
    Xu M; Liang H; Meng SS; Gu ZY
    Analyst; 2021 Jul; 146(13):4235-4241. PubMed ID: 34096937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinatively Unsaturated Metal Site-Promoted Selective Adsorption of Organic Molecules on Supported Metal-Organic Framework Nanosheets.
    Zha J; Yin X; Baltzegar JR; Zhang X
    Langmuir; 2019 Oct; 35(40):12908-12913. PubMed ID: 31525936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Redox "Non-Innocent" Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal-Organic Frameworks.
    Zhang X; Vermeulen NA; Huang Z; Cui Y; Liu J; Krzyaniak MD; Li Z; Noh H; Wasielewski MR; Delferro M; Farha OK
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):635-641. PubMed ID: 29278492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming CO
    Yang K; Jiang J
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth inhibition of
    Fan G; Hong L; Zheng X; Zhou J; Zhan J; Chen Z; Liu S
    RSC Adv; 2018 Oct; 8(61):35314-35326. PubMed ID: 35547055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Charges of Dual Sites in Multivariate Metal-Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes.
    Liu H; Liu W; Xue G; Tan T; Yang C; An P; Chen W; Zhao W; Fan T; Cui C; Tang Z; Li G
    J Am Chem Soc; 2023 May; 145(20):11085-11096. PubMed ID: 37162302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Cu-ZSM-5 zeolites and Cu-MOF-505 metal-organic frameworks as heterogeneous catalysts for the Mukaiyama aldol reaction: a DFT mechanistic study.
    Yadnum S; Choomwattana S; Khongpracha P; Sirijaraensre J; Limtrakul J
    Chemphyschem; 2013 Apr; 14(5):923-8. PubMed ID: 23436681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric Oxide Release from S-Nitrosothiols.
    Ling P; Gao X; Zang X; Sun X; Gao F
    Chem Asian J; 2022 Apr; 17(7):e202101358. PubMed ID: 35178879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel design of Cu(I) active site on the metal-organic framework for exploring the structural transformation of Fenton-like catalysts through in situ "capturing" OH
    Li X; Li X; Wang C; Wang B
    J Colloid Interface Sci; 2023 Oct; 648():778-786. PubMed ID: 37321097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal-organic frameworks.
    Han B; Hu X; Yu M; Peng T; Li Y; He G
    RSC Adv; 2018 Jun; 8(40):22748-22754. PubMed ID: 35539698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.