These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35938930)

  • 1. Rapid Biodegradable Ionic Aggregates of Polyesters Constructed with Fertilizer Ingredients.
    Lee HJ; Cho WY; Lee HC; Seo YH; Baek JW; Lee PC; Lee BY
    J Am Chem Soc; 2022 Sep; 144(35):15911-15915. PubMed ID: 35938930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ductile Copolyesters Prepared Using Succinic Acid, 1,4-Butanediol, and Bis(2-hydroxyethyl) Terephthalate with Minimizing Generation of Tetrahydrofuran.
    Park SU; Seo HJ; Seo YH; Park JY; Kim H; Cho WY; Lee PC; Lee BY
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradability of novel high T
    Wang Y; Davey CJE; van der Maas K; van Putten RJ; Tietema A; Parsons JR; Gruter GM
    Sci Total Environ; 2022 Apr; 815():152781. PubMed ID: 34990691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable aliphatic polyester ionomers.
    Han SI; Yoo Y; Kim DK; Im SS
    Macromol Biosci; 2004 Mar; 4(3):200-7. PubMed ID: 15468209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters.
    Haernvall K; Zitzenbacher S; Yamamoto M; Schick MB; Ribitsch D; Guebitz GM
    J Biotechnol; 2017 Sep; 257():70-77. PubMed ID: 28237250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-catalyzed polycondensation of polyester macrodiols with divinyl adipate: a green method for the preparation of thermoplastic block copolyesters.
    Dai S; Xue L; Zinn M; Li Z
    Biomacromolecules; 2009 Dec; 10(12):3176-81. PubMed ID: 19919068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.
    Wu CS
    Carbohydr Polym; 2012 Sep; 90(1):583-91. PubMed ID: 24751080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic polymerization to polyesters in nonaqueous solvents.
    Zhao H
    Methods Enzymol; 2019; 627():1-21. PubMed ID: 31630737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive Polyesters with Alkene and Carboxylic Acid Side-Groups for Tissue Engineering Applications.
    Mountaki SA; Kaliva M; Loukelis K; Chatzinikolaidou M; Vamvakaki M
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34070123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of Ionic Phthalic Acid Based Polyesters by Wastewater Microorganisms and Their Enzymes.
    Haernvall K; Zitzenbacher S; Wallig K; Yamamoto M; Schick MB; Ribitsch D; Guebitz GM
    Environ Sci Technol; 2017 Apr; 51(8):4596-4605. PubMed ID: 28345898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources.
    Uyama H; Kuwabara M; Tsujimoto T; Kobayashi S
    Biomacromolecules; 2003; 4(2):211-5. PubMed ID: 12625714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of polyesters containing aromatic constituents.
    Müller RJ; Kleeberg I; Deckwer WD
    J Biotechnol; 2001 Mar; 86(2):87-95. PubMed ID: 11245897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications.
    Urbánek T; Jäger E; Jäger A; Hrubý M
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31248100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial approach to develop tailored biodegradable poly(xylitol dicarboxylate) polyesters.
    Dasgupta Q; Chatterjee K; Madras G
    Biomacromolecules; 2014 Nov; 15(11):4302-13. PubMed ID: 25322446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring chain length selectivity in HIC-catalyzed polycondensation reactions.
    Feder D; Gross RA
    Biomacromolecules; 2010 Mar; 11(3):690-7. PubMed ID: 20095578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.
    Korley JN; Yazdi S; McHugh K; Kirk J; Anderson J; Putnam D
    Biomaterials; 2016 Aug; 98():41-52. PubMed ID: 27179432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
    Shah AA; Kato S; Shintani N; Kamini NR; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3437-47. PubMed ID: 24522729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe.
    Zumstein MT; Kohler HE; McNeill K; Sander M
    Environ Sci Technol; 2017 Apr; 51(8):4358-4367. PubMed ID: 28140581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis.
    Weinland DH; van der Maas K; Wang Y; Bottega Pergher B; van Putten RJ; Wang B; Gruter GM
    Nat Commun; 2022 Nov; 13(1):7370. PubMed ID: 36450717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.