BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35939037)

  • 1. Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering.
    Luo Z; Pan F; Zhu Y; Du S; Yan Y; Wang R; Li S; Xu H
    ACS Synth Biol; 2022 Aug; 11(8):2766-2778. PubMed ID: 35939037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters.
    Wang W; Xiang Y; Yin G; Hu S; Cheng J; Chen J; Du G; Kang Z; Wang Y
    J Agric Food Chem; 2024 Apr; 72(14):8006-8017. PubMed ID: 38554273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modularized Engineering of Shewanella oneidensis MR-1 for Efficient and Directional Synthesis of 5-Aminolevulinic Acid.
    Wu J; Wu J; He RL; Hu L; Liu DF; Li WW
    Metab Eng; 2024 May; 83():206-215. PubMed ID: 38710300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: γ-aminobutyric acid and δ-aminolevulinic acid.
    Su A; Yu Q; Luo Y; Yang J; Wang E; Yuan H
    Microb Biotechnol; 2021 Nov; 14(6):2279-2290. PubMed ID: 33675575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield.
    Yang P; Liu W; Cheng X; Wang J; Wang Q; Qi Q
    Appl Environ Microbiol; 2016 May; 82(9):2709-2717. PubMed ID: 26921424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y; Chen T; Feng L; Zhang S; Xing D; Wang Z
    Biotechnol Lett; 2017 Sep; 39(9):1369-1374. PubMed ID: 28536938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Moo-Young M; Perry Chou C
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z; Wang Y; Wang Q; Qi Q
    Bioeng Bugs; 2011; 2(6):342-5. PubMed ID: 22008939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in production of 5-aminolevulinic acid using biological strategies.
    Kang Z; Ding W; Gong X; Liu Q; Du G; Chen J
    World J Microbiol Biotechnol; 2017 Oct; 33(11):200. PubMed ID: 29038905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis.
    Ding X; Zheng Z; Zhao G; Wang L; Wang H; Yang Q; Zhang M; Li L; Wang P
    Microb Cell Fact; 2022 May; 21(1):101. PubMed ID: 35643569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid.
    Zhang C; Li Y; Zhu F; Li Z; Lu N; Li Y; Xu Q; Chen N
    Bioresour Technol; 2020 Dec; 318():124064. PubMed ID: 32905949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH; Lim HG; Park S; Seo SW; Jung GY
    Metab Eng; 2017 Sep; 43(Pt A):1-8. PubMed ID: 28739388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid].
    Wang L; Yan S; Yang T; Xu M; Zhang X; Shao M; Li H; Rao Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4314-4328. PubMed ID: 34984877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butyrate production in engineered Escherichia coli with synthetic scaffolds.
    Baek JM; Mazumdar S; Lee SW; Jung MY; Lim JH; Seo SW; Jung GY; Oh MK
    Biotechnol Bioeng; 2013 Oct; 110(10):2790-4. PubMed ID: 23568786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic protein scaffolds provide modular control over metabolic flux.
    Dueber JE; Wu GC; Malmirchegini GR; Moon TS; Petzold CJ; Ullal AV; Prather KL; Keasling JD
    Nat Biotechnol; 2009 Aug; 27(8):753-9. PubMed ID: 19648908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Weng H; Zhou Z; Du G; Kang Z
    Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of the Whole-Cell System in the Efficient Biosynthesis of Heme.
    Su H; Chen X; Chen S; Guo M; Liu H
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae.
    Hara KY; Saito M; Kato H; Morikawa K; Kikukawa H; Nomura H; Fujimoto T; Hirono-Hara Y; Watanabe S; Kanamaru K; Kondo A
    Microb Cell Fact; 2019 Nov; 18(1):194. PubMed ID: 31699086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.