These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35939199)

  • 41. Power-effective scanning with AODs for 3D optogenetic applications.
    Ricci P; Marchetti M; Sorelli M; Turrini L; Resta F; Gavryusev V; de Vito G; Sancataldo G; Vanzi F; Silvestri L; Pavone FS
    J Biophotonics; 2022 Apr; 15(4):e202100256. PubMed ID: 35000289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PyZebrascope: An Open-Source Platform for Brain-Wide Neural Activity Imaging in Zebrafish.
    Barbara R; Nagathihalli Kantharaju M; Haruvi R; Harrington K; Kawashima T
    Front Cell Dev Biol; 2022; 10():875044. PubMed ID: 35663407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging.
    Lin PY; Hwang SL; Lee CH; Chen BC
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34796706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging.
    Lu Z; Liu Y; Jin M; Luo X; Yue H; Wang Z; Zuo S; Zeng Y; Fan J; Pang Y; Wu J; Yang J; Dai Q
    Nat Methods; 2023 May; 20(5):735-746. PubMed ID: 37024654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tilt-invariant scanned oblique plane illumination microscopy for large-scale volumetric imaging.
    Kumar M; Kozorovitskiy Y
    Opt Lett; 2019 Apr; 44(7):1706-1709. PubMed ID: 30933127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Guide to Emerging Technologies for Large-Scale and Whole-Brain Optical Imaging of Neuronal Activity.
    Weisenburger S; Vaziri A
    Annu Rev Neurosci; 2018 Jul; 41():431-452. PubMed ID: 29709208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences.
    Maglione M; Sigrist SJ
    Nat Neurosci; 2013 Jul; 16(7):790-7. PubMed ID: 23799471
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage imaging with ANNINE dyes and two-photon microscopy of Purkinje dendrites in awake mice.
    Roome CJ; Kuhn B
    Neurosci Res; 2020 Mar; 152():15-24. PubMed ID: 31758973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Practical Guide to Light Sheet Microscopy.
    Bennett DV; Ahrens MB
    Methods Mol Biol; 2016; 1451():321-31. PubMed ID: 27464818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High activity and high functional connectivity are mutually exclusive in resting state zebrafish and human brains.
    Zarei M; Xie D; Jiang F; Bagirov A; Huang B; Raj A; Nagarajan S; Guo S
    BMC Biol; 2022 Apr; 20(1):84. PubMed ID: 35410342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diffuse light-sheet microscopy for stripe-free calcium imaging of neural populations.
    Taylor MA; Vanwalleghem GC; Favre-Bulle IA; Scott EK
    J Biophotonics; 2018 Dec; 11(12):e201800088. PubMed ID: 29920963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Craniotomy Procedure for Visualizing Neuronal Activities in Hippocampus of Behaving Mice.
    Wang Y; Zhu D; Liu B; Piatkevich KD
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.
    Duan Y; Chen N
    Opt Lett; 2015 Nov; 40(22):5251-4. PubMed ID: 26565847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm
    Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes.
    Homma R; Baker BJ; Jin L; Garaschuk O; Konnerth A; Cohen LB; Bleau CX; Canepari M; Djurisic M; Zecevic D
    Methods Mol Biol; 2009; 489():43-79. PubMed ID: 18839087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo imaging of neural activity.
    Yang W; Yuste R
    Nat Methods; 2017 Apr; 14(4):349-359. PubMed ID: 28362436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quadrature demodulation in line-scan focal modulation microscopy for imaging three-dimensional zebrafish neural structure.
    Shen S; Wu J; Chen N
    J Biophotonics; 2020 Jan; 13(1):e201900170. PubMed ID: 31343833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Fluorescence microscopy for brain activity imaging: one-photon microscopy and its application to pharmacological research].
    Sato M; Kuronuma H; Matsumoto K
    Nihon Yakurigaku Zasshi; 2024; 159(4):229-234. PubMed ID: 38945906
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity.
    Aghayee S; Winkowski DE; Bowen Z; Marshall EE; Harrington MJ; Kanold PO; Losert W
    Front Neural Circuits; 2017; 11():56. PubMed ID: 28860973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).
    Song A; Charles AS; Koay SA; Gauthier JL; Thiberge SY; Pillow JW; Tank DW
    Nat Methods; 2017 Apr; 14(4):420-426. PubMed ID: 28319111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.