These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35939199)

  • 61. Hybrid wide-field and scanning microscopy for high-speed 3D imaging.
    Duan Y; Chen N
    Opt Lett; 2015 Nov; 40(22):5251-4. PubMed ID: 26565847
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm
    Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In vivo imaging of neural activity.
    Yang W; Yuste R
    Nat Methods; 2017 Apr; 14(4):349-359. PubMed ID: 28362436
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes.
    Homma R; Baker BJ; Jin L; Garaschuk O; Konnerth A; Cohen LB; Bleau CX; Canepari M; Djurisic M; Zecevic D
    Methods Mol Biol; 2009; 489():43-79. PubMed ID: 18839087
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Fluorescence microscopy for brain activity imaging: one-photon microscopy and its application to pharmacological research].
    Sato M; Kuronuma H; Matsumoto K
    Nihon Yakurigaku Zasshi; 2024; 159(4):229-234. PubMed ID: 38945906
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quadrature demodulation in line-scan focal modulation microscopy for imaging three-dimensional zebrafish neural structure.
    Shen S; Wu J; Chen N
    J Biophotonics; 2020 Jan; 13(1):e201900170. PubMed ID: 31343833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity.
    Hoffmann M; Henninger J; Veith J; Richter L; Judkewitz B
    Nat Commun; 2023 Dec; 14(1):8019. PubMed ID: 38049412
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity.
    Aghayee S; Winkowski DE; Bowen Z; Marshall EE; Harrington MJ; Kanold PO; Losert W
    Front Neural Circuits; 2017; 11():56. PubMed ID: 28860973
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS).
    Song A; Charles AS; Koay SA; Gauthier JL; Thiberge SY; Pillow JW; Tank DW
    Nat Methods; 2017 Apr; 14(4):420-426. PubMed ID: 28319111
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recording Neural Activity in Unrestrained Animals with Three-Dimensional Tracking Two-Photon Microscopy.
    Karagyozov D; Mihovilovic Skanata M; Lesar A; Gershow M
    Cell Rep; 2018 Oct; 25(5):1371-1383.e10. PubMed ID: 30380425
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging.
    Sofroniew NJ; Flickinger D; King J; Svoboda K
    Elife; 2016 Jun; 5():. PubMed ID: 27300105
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.
    Fernández-Alfonso T; Nadella KM; Iacaruso MF; Pichler B; Roš H; Kirkby PA; Silver RA
    J Neurosci Methods; 2014 Jan; 222():69-81. PubMed ID: 24200507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comprehensive Imaging of Sensory-Evoked Activity of Entire Neurons Within the Awake Developing Brain Using Ultrafast AOD-Based Random-Access Two-Photon Microscopy.
    Sakaki KDR; Podgorski K; Dellazizzo Toth TA; Coleman P; Haas K
    Front Neural Circuits; 2020; 14():33. PubMed ID: 32612514
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cellular level brain imaging in behaving mammals: an engineering approach.
    Hamel EJ; Grewe BF; Parker JG; Schnitzer MJ
    Neuron; 2015 Apr; 86(1):140-59. PubMed ID: 25856491
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetically encoded indicators of neuronal activity.
    Lin MZ; Schnitzer MJ
    Nat Neurosci; 2016 Aug; 19(9):1142-53. PubMed ID: 27571193
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets.
    Hillman EM; Voleti V; Patel K; Li W; Yu H; Perez-Campos C; Benezra SE; Bruno RM; Galwaduge PT
    Curr Opin Neurobiol; 2018 Jun; 50():190-200. PubMed ID: 29642044
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Two-Color Volumetric Imaging of Neuronal Activity of Cortical Columns.
    Han S; Yang W; Yuste R
    Cell Rep; 2019 May; 27(7):2229-2240.e4. PubMed ID: 31091458
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lenses.
    Shao W; Kilic K; Yin W; Wirak G; Qin X; Feng H; Boas D; Gabel CV; Yi J
    Quant Imaging Med Surg; 2021 Mar; 11(3):983-997. PubMed ID: 33654671
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.