These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35939243)

  • 1. Review: predatory soil mites as biocontrol agents of above- and below-ground plant pests.
    Beretta GM; Deere JA; Messelink GJ; Muñoz-Cárdenas K; Janssen A
    Exp Appl Acarol; 2022 Jul; 87(2-3):143-162. PubMed ID: 35939243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mites (Acari) as a factor in greenhouse management.
    Gerson U; Weintraub PG
    Annu Rev Entomol; 2012; 57():229-47. PubMed ID: 21910634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach.
    Kumar V; Xiao Y; McKenzie CL; Osborne LS
    Exp Appl Acarol; 2015 Apr; 65(4):465-81. PubMed ID: 25772442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predatory mites (Acari: Mesostigmata: Phytoseiidae) intercepted from samples imported to Taiwan, with description of a new species.
    Liao JR; Ho CC; Ko CC
    Zootaxa; 2021 Feb; 4927(3):zootaxa.4927.3.1. PubMed ID: 33756698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalist-feeding subterranean mites as potential biological control agents of immature corn rootworms.
    Prischmann DA; Knutson EM; Dashiell KE; Lundgren JG
    Exp Appl Acarol; 2011 Nov; 55(3):233-48. PubMed ID: 21598089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural biological control of pest mites in Brazilian sun coffee agroecosystems.
    Teodoro AV; Sarmento RA; Rêgo AS; da Graça S Maciel A
    Recent Pat Food Nutr Agric; 2010 Jun; 2(2):160-5. PubMed ID: 20653561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Status of Phytoseiid Mites as Biological Control Agents in Latin America and Experiences from Argentina Using Neoseiulus californicus.
    Vásquez C; Colmenárez YC; Greco N; Ramos M
    Neotrop Entomol; 2023 Apr; 52(2):240-250. PubMed ID: 36811713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata).
    Barbosa MF; de Moraes GJ
    Exp Appl Acarol; 2016 Jul; 69(3):289-96. PubMed ID: 27115501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities.
    de Cássia Neves Esteca F; Rodrigues LR; de Moraes GJ; Júnior ID; Klingen I
    Exp Appl Acarol; 2018 Oct; 76(2):161-183. PubMed ID: 30293177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prey and Pollen Food Choice Depends on Previous Diet in an Omnivorous Predatory Mite.
    Schuldiner-Harpaz T; Coll M; Weintraub PG
    Environ Entomol; 2016 Aug; 45(4):995-8. PubMed ID: 27271945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of two predator species for biological control of the two-spotted spider mite.
    Fonseca MM; Pallini A; Marques PH; Lima E; Janssen A
    Exp Appl Acarol; 2020 Mar; 80(3):409-422. PubMed ID: 32030606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual effect of commonly used fungicides in strawberries on Amblyseius swirskii, Neoseiulus cucumeris, and Neoseiulus californicus (Mesostigmata: Phytoseiidae).
    Busuulwa A; Revynthi AM; Liburd OE; Lahiri S
    Exp Appl Acarol; 2024 Aug; 93(2):253-272. PubMed ID: 38869730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supplemental food that supports both predator and pest: a risk for biological control?
    Leman A; Messelink GJ
    Exp Appl Acarol; 2015 Apr; 65(4):511-24. PubMed ID: 25349063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection, Detrimental Effects, and Transmission Pathways of the Pathogenic Bacterium Acaricomes phytoseiuli in Commercial Predatory Mites.
    Xie Z; Hoffmann AA; Zhang B; Xu X
    Microbiol Spectr; 2022 Dec; 10(6):e0265422. PubMed ID: 36321911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefit-cost Trade-offs of Early Learning in Foraging Predatory Mites Amblyseius Swirskii.
    Christiansen IC; Szin S; Schausberger P
    Sci Rep; 2016 Mar; 6():23571. PubMed ID: 27006149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mites for the control of pests in protected cultivation.
    Gerson U; Weintraub PG
    Pest Manag Sci; 2007 Jul; 63(7):658-76. PubMed ID: 17533640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips.
    Wiethoff J; Poehling HM; Meyhöfer R
    Exp Appl Acarol; 2004; 34(3-4):239-61. PubMed ID: 15651523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why are phytoseiid predatory mites not effectively controlling Echinothrips americanus?
    Vangansbeke D; Van Doren E; Duarte MVA; Pijnakker J; Wäckers F; De Clercq P
    Exp Appl Acarol; 2023 Jun; 90(1-2):1-17. PubMed ID: 37285108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoseiid mites benefited from organic fertilization by increasing the population of Tyrophagus mites in apple orchards.
    Komagata Y; Oe T; Sekine T; Shimmura R; Toyama M; Kishimoto H
    Exp Appl Acarol; 2024 Oct; 93(3):583-595. PubMed ID: 38995469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.
    Roubinet E; Birkhofer K; Malsher G; Staudacher K; Ekbom B; Traugott M; Jonsson M
    Ecol Appl; 2017 Jun; 27(4):1167-1177. PubMed ID: 28132400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.