These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 35939293)
41. Vacancy and doping engineering of Ni-based charge-buffer electrode for highly-efficient membrane-free and decoupled hydrogen/oxygen evolution. Nie Z; Zhang L; Du Z; Hu J; Huang X; Zhou C; Wågberg T; Hu G J Colloid Interface Sci; 2023 Jul; 642():714-723. PubMed ID: 37037077 [TBL] [Abstract][Full Text] [Related]
42. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Xie X; Shang L; Shi R; Waterhouse GIN; Zhao J; Zhang T Nanoscale; 2020 Jun; 12(24):13129-13136. PubMed ID: 32584366 [TBL] [Abstract][Full Text] [Related]
43. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. Han A; Zhang H; Yuan R; Ji H; Du P ACS Appl Mater Interfaces; 2017 Jan; 9(3):2240-2248. PubMed ID: 28008761 [TBL] [Abstract][Full Text] [Related]
44. Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn-Air Batteries. Zhang H; Zhao M; Liu H; Shi S; Wang Z; Zhang B; Song L; Shang J; Yang Y; Ma C; Zheng L; Han Y; Huang W Nano Lett; 2021 Mar; 21(5):2255-2264. PubMed ID: 33599511 [TBL] [Abstract][Full Text] [Related]
45. Co/Cu-modified NiO film grown on nickel foam as a highly active and stable electrocatalyst for overall water splitting. Guo Z; Wang X; Gao Y; Liu Z Dalton Trans; 2020 Feb; 49(6):1776-1784. PubMed ID: 31967134 [TBL] [Abstract][Full Text] [Related]
46. NiFe Wu Z; Zou Z; Huang J; Gao F ACS Appl Mater Interfaces; 2018 Aug; 10(31):26283-26292. PubMed ID: 30009602 [TBL] [Abstract][Full Text] [Related]
47. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-Air Battery. Li H; Li Q; Wen P; Williams TB; Adhikari S; Dun C; Lu C; Itanze D; Jiang L; Carroll DL; Donati GL; Lundin PM; Qiu Y; Geyer SM Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29334145 [TBL] [Abstract][Full Text] [Related]
48. Constructing FeNiPt@C Trifunctional Catalyst by High Spin-Induced Water Oxidation Activity for Zn-Air Battery and Anion Exchange Membrane Water Electrolyzer. Pan Y; Li Y; Nairan A; Khan U; Hu Y; Wu B; Sun L; Zeng L; Gao J Adv Sci (Weinh); 2024 May; 11(19):e2308205. PubMed ID: 38482978 [TBL] [Abstract][Full Text] [Related]
49. Efficient Oxygen Electrocatalyst for Zn-Air Batteries: Carbon Dots and Co Zhang P; Bin D; Wei JS; Niu XQ; Chen XB; Xia YY; Xiong HM ACS Appl Mater Interfaces; 2019 Apr; 11(15):14085-14094. PubMed ID: 30942998 [TBL] [Abstract][Full Text] [Related]
50. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis. Wu X; Han X; Ma X; Zhang W; Deng Y; Zhong C; Hu W ACS Appl Mater Interfaces; 2017 Apr; 9(14):12574-12583. PubMed ID: 28319373 [TBL] [Abstract][Full Text] [Related]
51. In Situ Generation of Bifunctional Fe-Doped MoS Xue JY; Li FL; Zhao ZY; Li C; Ni CY; Gu HW; Young DJ; Lang JP Inorg Chem; 2019 Aug; 58(16):11202-11209. PubMed ID: 31385509 [TBL] [Abstract][Full Text] [Related]
52. Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting. Zhang M; Dai Q; Zheng H; Chen M; Dai L Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29349841 [TBL] [Abstract][Full Text] [Related]
53. A hierarchically-assembled Fe-MoS Xue JY; Li FL; Zhao ZY; Li C; Ni CY; Gu HW; Braunstein P; Huang XQ; Lang JP Dalton Trans; 2019 Aug; 48(32):12186-12192. PubMed ID: 31334514 [TBL] [Abstract][Full Text] [Related]
54. A rational design of efficient trifunctional electrocatalysts derived from tailored Co Shi M; Wang JH; Zhang Y; Zhang XM Dalton Trans; 2020 Feb; 49(7):2280-2289. PubMed ID: 32016246 [TBL] [Abstract][Full Text] [Related]
55. Iron Single Atoms-Assisted Cobalt Nitride Nanoparticles to Strengthen the Cycle Life of Rechargeable Zn-Air Battery. Zhang X; Yu P; Xing G; Xie Y; Zhang X; Zhang G; Sun F; Wang L Small; 2022 Dec; 18(51):e2205228. PubMed ID: 36328702 [TBL] [Abstract][Full Text] [Related]
56. Amorphous Iron(III)-Borate Nanolattices as Multifunctional Electrodes for Self-Driven Overall Water Splitting and Rechargeable Zinc-Air Battery. Zhao W; Xu T; Li T; Wang Y; Liu H; Feng J; Ding S; Li Z; Wu M Small; 2018 Nov; 14(48):e1802829. PubMed ID: 30264423 [TBL] [Abstract][Full Text] [Related]
57. In Situ Coupling of Strung Co4N and Intertwined N-C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn-Air Batteries. Meng F; Zhong H; Bao D; Yan J; Zhang X J Am Chem Soc; 2016 Aug; 138(32):10226-31. PubMed ID: 27463122 [TBL] [Abstract][Full Text] [Related]
58. MOF-derived nitrogen-doped carbon-based trimetallic bifunctional catalysts for rechargeable zinc-air batteries. Zhu B; Li J; Hou Z; Meng C; Liu G; Du X; Guan Y Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35738190 [TBL] [Abstract][Full Text] [Related]
59. Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. Wang P; Pu Z; Li Y; Wu L; Tu Z; Jiang M; Kou Z; Amiinu IS; Mu S ACS Appl Mater Interfaces; 2017 Aug; 9(31):26001-26007. PubMed ID: 28714664 [TBL] [Abstract][Full Text] [Related]
60. Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. Duan D; Guo D; Gao J; Liu S; Wang Y J Colloid Interface Sci; 2022 Sep; 622():250-260. PubMed ID: 35512589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]