These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35939301)

  • 1. Development and Validation of a Deep Learning Model for Brain Tumor Diagnosis and Classification Using Magnetic Resonance Imaging.
    Gao P; Shan W; Guo Y; Wang Y; Sun R; Cai J; Li H; Chan WS; Liu P; Yi L; Zhang S; Li W; Jiang T; He K; Wu Z
    JAMA Netw Open; 2022 Aug; 5(8):e2225608. PubMed ID: 35939301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing false positives in deep learning-based brain metastasis detection by using both gradient-echo and spin-echo contrast-enhanced MRI: validation in a multi-center diagnostic cohort.
    Yun S; Park JE; Kim N; Park SY; Kim HS
    Eur Radiol; 2024 May; 34(5):2873-2884. PubMed ID: 37891415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study.
    Gao X; Wang X
    Diagn Interv Imaging; 2020 Feb; 101(2):91-100. PubMed ID: 31375430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer.
    Wu Q; Wang S; Zhang S; Wang M; Ding Y; Fang J; Wu Q; Qian W; Liu Z; Sun K; Jin Y; Ma H; Tian J
    JAMA Netw Open; 2020 Jul; 3(7):e2011625. PubMed ID: 32706384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: a multi-center study.
    Ye Q; Yang H; Lin B; Wang M; Song L; Xie Z; Lu Z; Feng Q; Zhao Y
    Eur Radiol; 2024 Jul; 34(7):4287-4299. PubMed ID: 38127073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deep Learning Model for Classification of Parotid Neoplasms Based on Multimodal Magnetic Resonance Image Sequences.
    Liu X; Pan Y; Zhang X; Sha Y; Wang S; Li H; Liu J
    Laryngoscope; 2023 Feb; 133(2):327-335. PubMed ID: 35575610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Deep Learning-Based Model to Distinguish Glioblastoma from Solitary Brain Metastasis Using Conventional MR Images.
    Shin I; Kim H; Ahn SS; Sohn B; Bae S; Park JE; Kim HS; Lee SK
    AJNR Am J Neuroradiol; 2021 May; 42(5):838-844. PubMed ID: 33737268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe MK; Chen MM; Briere TM; Wang Y; Son JB; Pagel MD; Li J; Ma J
    Radiology; 2020 May; 295(2):407-415. PubMed ID: 32181729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating Small-Cell Lung Cancer From Non-Small-Cell Lung Cancer Brain Metastases Based on MRI Using Efficientnet and Transfer Learning Approach.
    Grossman R; Haim O; Abramov S; Shofty B; Artzi M
    Technol Cancer Res Treat; 2021; 20():15330338211004919. PubMed ID: 34030542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Segmentation and Classification of Knee Synovitis Based on MRI Using Deep Learning.
    Wang Q; Yao M; Song X; Liu Y; Xing X; Chen Y; Zhao F; Liu K; Cheng X; Jiang S; Lang N
    Acad Radiol; 2024 Apr; 31(4):1518-1527. PubMed ID: 37951778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging.
    Huang C; Chen W; Liu B; Yu R; Chen X; Tang F; Liu J; Lu W
    Front Immunol; 2022; 13():897959. PubMed ID: 35774780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas.
    Li Y; Zheng K; Li S; Yi Y; Li M; Ren Y; Guo C; Zhong L; Yang W; Li X; Yao L
    Cancer Imaging; 2023 Oct; 23(1):105. PubMed ID: 37891702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario.
    Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS
    Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.