These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35939464)

  • 1. Extensional-Flow Impedance Cytometer for Contactless and Optics-Free Erythrocyte Deformability Analysis.
    Reale R; De Ninno A; Nepi T; Bisegna P; Caselli F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):565-572. PubMed ID: 35939464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel.
    Lee SS; Yim Y; Ahn KH; Lee SJ
    Biomed Microdevices; 2009 Oct; 11(5):1021-7. PubMed ID: 19434498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels.
    Tatsumi K; Katsumoto Y; Fujiwara R; Nakabe K
    Sensors (Basel); 2012; 12(8):10566-83. PubMed ID: 23112616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique].
    Zhang M; Meng X; Zhu L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):848-854. PubMed ID: 33140609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel.
    Yaginuma T; Oliveira MS; Lima R; Ishikawa T; Yamaguchi T
    Biomicrofluidics; 2013; 7(5):54110. PubMed ID: 24404073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude-Modulated Electrodeformation to Evaluate Mechanical Fatigue of Biological Cells.
    Dieujuste D; Alamouti AK; Xu H; Du E
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37902362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of red blood cell deformability change during blood storage.
    Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y
    Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in red blood cell deformability during storage: a microfluidic approach.
    Cluitmans JC; Chokkalingam V; Janssen AM; Brock R; Huck WT; Bosman GJ
    Biomed Res Int; 2014; 2014():764268. PubMed ID: 25295273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technologies for measuring red blood cell deformability.
    Matthews K; Lamoureux ES; Myrand-Lapierre ME; Duffy SP; Ma H
    Lab Chip; 2022 Mar; 22(7):1254-1274. PubMed ID: 35266475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo.
    Fischer DJ; Torrence NJ; Sprung RJ; Spence DM
    Analyst; 2003 Sep; 128(9):1163-8. PubMed ID: 14529024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flows of healthy and hardened RBC suspensions through a micropillar array.
    Stathoulopoulos A; Passos A; Balabani S
    Med Eng Phys; 2022 Sep; 107():103874. PubMed ID: 36068027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion.
    Man Y; Maji D; An R; Ahuja SP; Little JA; Suster MA; Mohseni P; Gurkan UA
    Lab Chip; 2021 Mar; 21(6):1036-1048. PubMed ID: 33666615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.