These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 35939495)
1. The effects of robotic assistance on upper limb spatial muscle synergies in healthy people during planar upper-limb training. Cancrini A; Baitelli P; Lavit Nicora M; Malosio M; Pedrocchi A; Scano A PLoS One; 2022; 17(8):e0272813. PubMed ID: 35939495 [TBL] [Abstract][Full Text] [Related]
2. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
3. Robotic Assistance for Upper Limbs May Induce Slight Changes in Motor Modules Compared With Free Movements in Stroke Survivors: A Cluster-Based Muscle Synergy Analysis. Scano A; Chiavenna A; Malosio M; Molinari Tosatti L; Molteni F Front Hum Neurosci; 2018; 12():290. PubMed ID: 30174596 [No Abstract] [Full Text] [Related]
4. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620 [TBL] [Abstract][Full Text] [Related]
5. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement. Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862 [TBL] [Abstract][Full Text] [Related]
6. A randomized controlled trial on the effects induced by robot-assisted and usual-care rehabilitation on upper limb muscle synergies in post-stroke subjects. Lencioni T; Fornia L; Bowman T; Marzegan A; Caronni A; Turolla A; Jonsdottir J; Carpinella I; Ferrarin M Sci Rep; 2021 Mar; 11(1):5323. PubMed ID: 33674675 [TBL] [Abstract][Full Text] [Related]
7. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
8. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Rodgers H; Bosomworth H; Krebs HI; van Wijck F; Howel D; Wilson N; Finch T; Alvarado N; Ternent L; Fernandez-Garcia C; Aird L; Andole S; Cohen DL; Dawson J; Ford GA; Francis R; Hogg S; Hughes N; Price CI; Turner DL; Vale L; Wilkes S; Shaw L Health Technol Assess; 2020 Oct; 24(54):1-232. PubMed ID: 33140719 [TBL] [Abstract][Full Text] [Related]
9. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. Lewis GN; Perreault EJ IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342 [TBL] [Abstract][Full Text] [Related]
10. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
11. Upper-Limb Muscle Synergy Features in Human-Robot Interaction with Circle-Drawing Movements. Wang C; Zhang S; Hu J; Huang Z; Shi C Appl Bionics Biomech; 2021; 2021():8850785. PubMed ID: 34567239 [TBL] [Abstract][Full Text] [Related]
12. Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: a pilot study. Tropea P; Monaco V; Coscia M; Posteraro F; Micera S J Neuroeng Rehabil; 2013 Oct; 10():103. PubMed ID: 24093623 [TBL] [Abstract][Full Text] [Related]
13. A Comprehensive Spatial Mapping of Muscle Synergies in Highly Variable Upper-Limb Movements of Healthy Subjects. Scano A; Dardari L; Molteni F; Giberti H; Tosatti LM; d'Avella A Front Physiol; 2019; 10():1231. PubMed ID: 31611812 [TBL] [Abstract][Full Text] [Related]
14. The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis. Raghavan P; Bilaloglu S; Ali SZ; Jin X; Aluru V; Buckley MC; Tang A; Yousefi A; Stone J; Agrawal SK; Lu Y Neurorehabil Neural Repair; 2020 Feb; 34(2):134-147. PubMed ID: 31959040 [No Abstract] [Full Text] [Related]
15. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Emken JL; Benitez R; Reinkensmeyer DJ J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects. Ziherl J; Novak D; Olenšek A; Mihelj M; Munih M J Neuroeng Rehabil; 2010 Oct; 7():52. PubMed ID: 20955566 [TBL] [Abstract][Full Text] [Related]
17. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
18. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Dunkelberger N; Schearer EM; O'Malley MK Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251 [TBL] [Abstract][Full Text] [Related]
19. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633 [TBL] [Abstract][Full Text] [Related]
20. Boosting robot-assisted rehabilitation of stroke hemiparesis by individualized selection of upper limb movements - a pilot study. Rosenthal O; Wing AM; Wyatt JL; Punt D; Brownless B; Ko-Ko C; Miall RC J Neuroeng Rehabil; 2019 Mar; 16(1):42. PubMed ID: 30894192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]