BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35939688)

  • 1. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu
    Kipouros I; Stańczak A; Dunietz EM; Ginsbach JW; Srnec M; Rulíšek L; Solomon EI
    J Am Chem Soc; 2023 Oct; 145(42):22866-22870. PubMed ID: 37844210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for H-bonding interactions to the μ-η
    Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI
    Chem Commun (Camb); 2022 Mar; 58(24):3913-3916. PubMed ID: 35237779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF.
    Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive L
    Garcia-Bosch I; Cowley RE; Díaz DE; Peterson RL; Solomon EI; Karlin KD
    J Am Chem Soc; 2017 Mar; 139(8):3186-3195. PubMed ID: 28195739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
    Matoba Y; Kihara S; Muraki Y; Bando N; Yoshitsu H; Kuroda T; Sakaguchi M; Kayama K; Tai H; Hirota S; Ogura T; Sugiyama M
    Biochemistry; 2017 Oct; 56(41):5593-5603. PubMed ID: 28902505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stabilized mu-eta(2):eta(2) peroxodicopper(II) complex with a secondary diamine ligand and its tyrosinase-like reactivity.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    J Am Chem Soc; 2002 Aug; 124(32):9332-3. PubMed ID: 12167002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolate-bonded bis(μ-oxido)-bis-copper(III) intermediates: hydroxylation and dehalogenation reactivities.
    Kang P; Lin BL; Large TAG; Ainsworth J; Wasinger EC; Stack TDP
    Faraday Discuss; 2022 May; 234(0):86-108. PubMed ID: 35156114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex.
    Poater A; Ribas X; Llobet A; Cavallo L; Solà M
    J Am Chem Soc; 2008 Dec; 130(52):17710-7. PubMed ID: 19055343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.
    Op't Holt BT; Vance MA; Mirica LM; Heppner DE; Stack TD; Solomon EI
    J Am Chem Soc; 2009 May; 131(18):6421-38. PubMed ID: 19368383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the hydroxylation of phenolates by the Cu(2)O (2)(N,N'-dimethylethylenediamine) (2) (2+) complex.
    Güell M; Luis JM; Solà M; Siegbahn PE
    J Biol Inorg Chem; 2009 Feb; 14(2):229-42. PubMed ID: 18972140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping tyrosinase key active intermediate under turnover.
    Spada A; Palavicini S; Monzani E; Bubacco L; Casella L
    Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.