BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35939688)

  • 21. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mu-eta2:eta2-peroxodicopper(II) complex with a secondary diamine ligand: a functional model of tyrosinase.
    Mirica LM; Rudd DJ; Vance MA; Solomon EI; Hodgson KO; Hedman B; Stack TD
    J Am Chem Soc; 2006 Mar; 128(8):2654-65. PubMed ID: 16492052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2 O2 Core: Phenolate Hydroxylation through a Cu(III) Intermediate.
    Chiang L; Keown W; Citek C; Wasinger EC; Stack TD
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10453-7. PubMed ID: 27440390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.
    Citek C; Lyons CT; Wasinger EC; Stack TD
    Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein.
    Matoba Y; Kihara S; Bando N; Yoshitsu H; Sakaguchi M; Kayama K; Yanagisawa S; Ogura T; Sugiyama M
    PLoS Biol; 2018 Dec; 16(12):e3000077. PubMed ID: 30596633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.
    Ramsden CA; Riley PA
    Bioorg Med Chem; 2014 Apr; 22(8):2388-95. PubMed ID: 24656803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone.
    Inoue T; Shiota Y; Yoshizawa K
    J Am Chem Soc; 2008 Dec; 130(50):16890-7. PubMed ID: 19007228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The catalytic cycle of tyrosinase: peroxide attack on the phenolate ring followed by O[bond]O cleavage.
    Siegbahn PEM
    J Biol Inorg Chem; 2003 May; 8(5):567-576. PubMed ID: 12634912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using tyrosinase as a monophenol monooxygenase: A combined strategy for effective inhibition of melanin formation.
    Lee SH; Baek K; Lee JE; Kim BG
    Biotechnol Bioeng; 2016 Apr; 113(4):735-43. PubMed ID: 26461518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxylation of p-substituted phenols by tyrosinase: further insight into the mechanism of tyrosinase activity.
    Muñoz-Muñoz JL; Berna J; García-Molina Mdel M; Garcia-Molina F; Garcia-Ruiz PA; Varon R; Rodriguez-Lopez JN; Garcia-Canovas F
    Biochem Biophys Res Commun; 2012 Jul; 424(2):228-33. PubMed ID: 22732412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monooxygenase activity of type 3 copper proteins.
    Itoh S; Fukuzumi S
    Acc Chem Res; 2007 Jul; 40(7):592-600. PubMed ID: 17461541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometric and electronic structure of [{Cu(MeAN)}2(μ-η2:η2(O2(2-)))]2+ with an unusually long O-O bond: O-O bond weakening vs activation for reductive cleavage.
    Park GY; Qayyum MF; Woertink J; Hodgson KO; Hedman B; Narducci Sarjeant AA; Solomon EI; Karlin KD
    J Am Chem Soc; 2012 May; 134(20):8513-24. PubMed ID: 22571744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Biomimetic Hydroxylation Catalysis with a Bis(pyrazolyl)imidazolylmethane Copper Peroxide Complex.
    Wilfer C; Liebhäuser P; Hoffmann A; Erdmann H; Grossmann O; Runtsch L; Paffenholz E; Schepper R; Dick R; Bauer M; Dürr M; Ivanović-Burmazović I; Herres-Pawlis S
    Chemistry; 2015 Dec; 21(49):17639-49. PubMed ID: 26458073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies.
    Buitrago E; Vuillamy A; Boumendjel A; Yi W; Gellon G; Hardré R; Philouze C; Serratrice G; Jamet H; Réglier M; Belle C
    Inorg Chem; 2014 Dec; 53(24):12848-58. PubMed ID: 25415587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy?
    Buitrago E; Hardré R; Haudecoeur R; Jamet H; Belle C; Boumendjel A; Bubacco L; Réglier M
    Curr Top Med Chem; 2016; 16(27):3033-3047. PubMed ID: 26881706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The basicity of an active-site water molecule discriminates between tyrosinase and catechol oxidase activity.
    Matoba Y; Oda K; Muraki Y; Masuda T
    Int J Biol Macromol; 2021 Jul; 183():1861-1870. PubMed ID: 34089758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intramolecular Phenolic H-Atom Abstraction by a N
    Panda S; Phan H; Dunietz EM; Brueggemeyer MT; Hota PK; Siegler MA; Jose A; Bhadra M; Solomon EI; Karlin KD
    J Am Chem Soc; 2024 Jun; 146(22):14942-14947. PubMed ID: 38775712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis.
    Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW
    J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.