BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35939703)

  • 1. Reversible structural changes in the influenza hemagglutinin precursor at membrane fusion pH.
    Garcia-Moro E; Zhang J; Calder LJ; Brown NR; Gamblin SJ; Skehel JJ; Rosenthal PB
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2208011119. PubMed ID: 35939703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity.
    Wang W; DeFeo CJ; Alvarado-Facundo E; Vassell R; Weiss CD
    J Virol; 2015 Oct; 89(20):10602-11. PubMed ID: 26269180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions in influenza haemagglutinin at membrane fusion pH.
    Benton DJ; Gamblin SJ; Rosenthal PB; Skehel JJ
    Nature; 2020 Jul; 583(7814):150-153. PubMed ID: 32461688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural intermediates in the low pH-induced transition of influenza hemagglutinin.
    Gao J; Gui M; Xiang Y
    PLoS Pathog; 2020 Nov; 16(11):e1009062. PubMed ID: 33253316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.
    Skehel JJ; Wiley DC
    Annu Rev Biochem; 2000; 69():531-69. PubMed ID: 10966468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific single or double proline substitutions in the "spring-loaded" coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity.
    Qiao H; Pelletier SL; Hoffman L; Hacker J; Armstrong RT; White JM
    J Cell Biol; 1998 Jun; 141(6):1335-47. PubMed ID: 9628890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy.
    Lim KS; Mohamed MS; Wang H; Hartono ; Hazawa M; Kobayashi A; Voon DC; Kodera N; Ando T; Wong RW
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129313. PubMed ID: 30825615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion.
    Mair CM; Meyer T; Schneider K; Huang Q; Veit M; Herrmann A
    J Virol; 2014 Nov; 88(22):13189-200. PubMed ID: 25187542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
    Huang Q; Korte T; Rachakonda PS; Knapp EW; Herrmann A
    Proteins; 2009 Feb; 74(2):291-303. PubMed ID: 18618705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delay of influenza hemagglutinin refolding into a fusion-competent conformation by receptor binding: a hypothesis.
    Leikina E; Markovic I; Chernomordik LV; Kozlov MM
    Biophys J; 2000 Sep; 79(3):1415-27. PubMed ID: 10969003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved histidine in Group-1 influenza subtype hemagglutinin proteins is essential for membrane fusion activity.
    Trost JF; Wang W; Liang B; Galloway SE; Agbogu E; Byrd-Leotis L; Steinhauer DA
    Virology; 2019 Oct; 536():78-90. PubMed ID: 31401467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The final conformation of the complete ectodomain of the HA2 subunit of influenza hemagglutinin can by itself drive low pH-dependent fusion.
    Kim CS; Epand RF; Leikina E; Epand RM; Chernomordik LV
    J Biol Chem; 2011 Apr; 286(15):13226-34. PubMed ID: 21292763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influenza virus M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface.
    Alvarado-Facundo E; Gao Y; Ribas-Aparicio RM; Jiménez-Alberto A; Weiss CD; Wang W
    J Virol; 2015 Feb; 89(4):1975-85. PubMed ID: 25473053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of an early fusion intermediate of influenza virus hemagglutinin.
    Xu R; Wilson IA
    J Virol; 2011 May; 85(10):5172-82. PubMed ID: 21367895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements.
    Kozlov MM; Chernomordik LV
    Biophys J; 1998 Sep; 75(3):1384-96. PubMed ID: 9726939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies on membrane-embedded influenza hemagglutinin and its fragments.
    Gray C; Tamm LK
    Protein Sci; 1997 Sep; 6(9):1993-2006. PubMed ID: 9300499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition and functions of the influenza fusion peptide.
    Cross KJ; Langley WA; Russell RJ; Skehel JJ; Steinhauer DA
    Protein Pept Lett; 2009; 16(7):766-78. PubMed ID: 19601906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.
    Gray C; Tamm LK
    Protein Sci; 1998 Nov; 7(11):2359-73. PubMed ID: 9828002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin.
    Leikina E; Ramos C; Markovic I; Zimmerberg J; Chernomordik LV
    EMBO J; 2002 Nov; 21(21):5701-10. PubMed ID: 12411488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation.
    Wharton SA; Calder LJ; Ruigrok RW; Skehel JJ; Steinhauer DA; Wiley DC
    EMBO J; 1995 Jan; 14(2):240-6. PubMed ID: 7835335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.