BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35939766)

  • 1. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently.
    Ghatak A; Samanta S; Nayek A; Mukherjee S; Dey SG; Dey A
    Inorg Chem; 2022 Aug; 61(33):12931-12947. PubMed ID: 35939766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors Determining the Rate and Selectivity of 4e
    Chatterjee S; Sengupta K; Mondal B; Dey S; Dey A
    Acc Chem Res; 2017 Jul; 50(7):1744-1753. PubMed ID: 28686419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e
    Bhunia S; Ghatak A; Rana A; Dey A
    J Am Chem Soc; 2023 Feb; 145(6):3812-3825. PubMed ID: 36744304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e
    Bhunia S; Rana A; Roy P; Martin DJ; Pegis ML; Roy B; Dey A
    J Am Chem Soc; 2018 Aug; 140(30):9444-9457. PubMed ID: 29975839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e
    Cai Q; Tran LK; Qiu T; Eddy JW; Pham TN; Yap GPA; Rosenthal J
    Inorg Chem; 2022 Apr; 61(14):5442-5451. PubMed ID: 35358381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the Oxygen Reduction Selectivity of Asymmetric Cobalt Porphyrins by Using Local Electrostatic Interactions.
    Zhang R; Warren JJ
    J Am Chem Soc; 2020 Aug; 142(31):13426-13434. PubMed ID: 32706247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol.
    Singha A; Mondal A; Nayek A; Dey SG; Dey A
    J Am Chem Soc; 2020 Dec; 142(52):21810-21828. PubMed ID: 33320658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the distal guanidine group on the rate and selectivity of O
    Ghatak A; Bhakta S; Bhunia S; Dey A
    Chem Sci; 2019 Nov; 10(42):9692-9698. PubMed ID: 32055338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity.
    Samanta S; Sengupta S; Biswas S; Ghosh S; Barman S; Dey A
    J Am Chem Soc; 2023 Dec; 145(48):26477-26486. PubMed ID: 37993986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Single Iron Porphyrin Shows pH Dependent Switch between "Push" and "Pull" Effects in Electrochemical Oxygen Reduction.
    Mukherjee S; Nayek A; Bhunia S; Dey SG; Dey A
    Inorg Chem; 2020 Oct; 59(19):14564-14576. PubMed ID: 32970430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective 4e-/4H+ O2 reduction by an iron(tetraferrocenyl)porphyrin complex: from proton transfer followed by electron transfer in organic solvent to proton coupled electron transfer in aqueous medium.
    Mittra K; Chatterjee S; Samanta S; Dey A
    Inorg Chem; 2013 Dec; 52(24):14317-25. PubMed ID: 24304224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology.
    Tovmasyan A; Weitner T; Sheng H; Lu M; Rajic Z; Warner DS; Spasojevic I; Reboucas JS; Benov L; Batinic-Haberle I
    Inorg Chem; 2013 May; 52(10):5677-91. PubMed ID: 23646875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron porphyrins as models of cytochrome c oxidase.
    Ricard D; L'Her M; Richard P; Boitrel B
    Chemistry; 2001 Aug; 7(15):3291-7. PubMed ID: 11531114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O
    Martin DJ; Wise CF; Pegis ML; Mayer JM
    Acc Chem Res; 2020 May; 53(5):1056-1065. PubMed ID: 32281786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation.
    Yang X; Hu J; Wu L; Hou H; Liang S; Yang J
    Environ Pollut; 2022 Nov; 313():120097. PubMed ID: 36089136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity-Determining Steps in O
    Brezny AC; Johnson SI; Raugei S; Mayer JM
    J Am Chem Soc; 2020 Mar; 142(9):4108-4113. PubMed ID: 32064870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic O2-Reduction by Synthetic Cytochrome c Oxidase Mimics: Identification of a "Bridging Peroxo" Intermediate Involved in Facile 4e(-)/4H(+) O2-Reduction.
    Chatterjee S; Sengupta K; Hematian S; Karlin KD; Dey A
    J Am Chem Soc; 2015 Oct; 137(40):12897-905. PubMed ID: 26419806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems.
    Bhunia S; Ghatak A; Dey A
    Chem Rev; 2022 Jul; 122(14):12370-12426. PubMed ID: 35404575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.