These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35939821)
1. Real Electrolyte Solutions in the Functionalized Mean Spherical Approximation: A Density Functional Theory for Simple Electrolyte Solutions. Soares EDA; Vernin NS; Santos MS; Tavares FW J Phys Chem B; 2022 Aug; 126(32):6095-6101. PubMed ID: 35939821 [TBL] [Abstract][Full Text] [Related]
2. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions. Yu YX; Wu J; Gao GH J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630 [TBL] [Abstract][Full Text] [Related]
3. Shells of charge: a density functional theory for charged hard spheres. Roth R; Gillespie D J Phys Condens Matter; 2016 Jun; 28(24):244006. PubMed ID: 27116385 [TBL] [Abstract][Full Text] [Related]
4. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385 [TBL] [Abstract][Full Text] [Related]
5. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study. Modak B; Patra CN; Ghosh SK; Das P J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495 [TBL] [Abstract][Full Text] [Related]
6. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154 [TBL] [Abstract][Full Text] [Related]
7. Structure of spherical electric double layers: a density functional approach. Goel T; Patra CN J Chem Phys; 2007 Jul; 127(3):034502. PubMed ID: 17655443 [TBL] [Abstract][Full Text] [Related]
8. Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures. Li Z; Wu J Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031109. PubMed ID: 15524508 [TBL] [Abstract][Full Text] [Related]
9. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall. Warshavsky V; Marucho M Phys Rev E; 2016 Apr; 93():042607. PubMed ID: 27176352 [TBL] [Abstract][Full Text] [Related]
10. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach. Medasani B; Ovanesyan Z; Thomas DG; Sushko ML; Marucho M J Chem Phys; 2014 May; 140(20):204510. PubMed ID: 24880304 [TBL] [Abstract][Full Text] [Related]
11. A cavity formation energy formula for hard spheres in simple electrolyte solutions. Xiao T; Zhou Y Phys Chem Chem Phys; 2023 May; 25(18):13080-13087. PubMed ID: 37115098 [TBL] [Abstract][Full Text] [Related]
12. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Buyukdagli S; Manghi M; Palmeri J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729 [TBL] [Abstract][Full Text] [Related]
13. Revisiting the Charged Shell Model: A Density Functional Theory for Electrolytes. Jiang J; Gillespie D J Chem Theory Comput; 2021 Apr; 17(4):2409-2416. PubMed ID: 33783216 [TBL] [Abstract][Full Text] [Related]
14. Assessing the accuracy of three classical density functional theories of the electrical double layer. Voukadinova A; Valiskó M; Gillespie D Phys Rev E; 2018 Jul; 98(1-1):012116. PubMed ID: 30110825 [TBL] [Abstract][Full Text] [Related]
15. Analytical theories of transport in concentrated electrolyte solutions from the MSA. Dufrêche JF; Bernard O; Durand-Vidal S; Turq P J Phys Chem B; 2005 May; 109(20):9873-84. PubMed ID: 16852194 [TBL] [Abstract][Full Text] [Related]
16. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069 [TBL] [Abstract][Full Text] [Related]
17. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Goel T; Patra CN; Ghosh SK; Mukherjee T J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228 [TBL] [Abstract][Full Text] [Related]
18. Energy-Scaled Debye-Hückel Theory for the Electrostatic Solvation Free Energy in Size-Asymmetric Electrolyte Solutions. Xiao T; Zhou Y; Li B J Phys Chem B; 2024 Feb; 128(4):1029-1039. PubMed ID: 38235680 [TBL] [Abstract][Full Text] [Related]
19. First-order mean spherical approximation for inhomogeneous fluids. Tang Y J Chem Phys; 2004 Dec; 121(21):10605-10. PubMed ID: 15549943 [TBL] [Abstract][Full Text] [Related]
20. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation. Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]