BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35939821)

  • 1. Real Electrolyte Solutions in the Functionalized Mean Spherical Approximation: A Density Functional Theory for Simple Electrolyte Solutions.
    Soares EDA; Vernin NS; Santos MS; Tavares FW
    J Phys Chem B; 2022 Aug; 126(32):6095-6101. PubMed ID: 35939821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shells of charge: a density functional theory for charged hard spheres.
    Roth R; Gillespie D
    J Phys Condens Matter; 2016 Jun; 28(24):244006. PubMed ID: 27116385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study.
    Modak B; Patra CN; Ghosh SK; Das P
    J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of spherical electric double layers: a density functional approach.
    Goel T; Patra CN
    J Chem Phys; 2007 Jul; 127(3):034502. PubMed ID: 17655443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures.
    Li Z; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031109. PubMed ID: 15524508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.
    Warshavsky V; Marucho M
    Phys Rev E; 2016 Apr; 93():042607. PubMed ID: 27176352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach.
    Medasani B; Ovanesyan Z; Thomas DG; Sushko ML; Marucho M
    J Chem Phys; 2014 May; 140(20):204510. PubMed ID: 24880304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cavity formation energy formula for hard spheres in simple electrolyte solutions.
    Xiao T; Zhou Y
    Phys Chem Chem Phys; 2023 May; 25(18):13080-13087. PubMed ID: 37115098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Charged Shell Model: A Density Functional Theory for Electrolytes.
    Jiang J; Gillespie D
    J Chem Theory Comput; 2021 Apr; 17(4):2409-2416. PubMed ID: 33783216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the accuracy of three classical density functional theories of the electrical double layer.
    Voukadinova A; Valiskó M; Gillespie D
    Phys Rev E; 2018 Jul; 98(1-1):012116. PubMed ID: 30110825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical theories of transport in concentrated electrolyte solutions from the MSA.
    Dufrêche JF; Bernard O; Durand-Vidal S; Turq P
    J Phys Chem B; 2005 May; 109(20):9873-84. PubMed ID: 16852194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-Scaled Debye-Hückel Theory for the Electrostatic Solvation Free Energy in Size-Asymmetric Electrolyte Solutions.
    Xiao T; Zhou Y; Li B
    J Phys Chem B; 2024 Feb; 128(4):1029-1039. PubMed ID: 38235680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-order mean spherical approximation for inhomogeneous fluids.
    Tang Y
    J Chem Phys; 2004 Dec; 121(21):10605-10. PubMed ID: 15549943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.
    Lyubimova O; Stoyanov SR; Gusarov S; Kovalenko A
    Langmuir; 2015 Jun; 31(25):7106-16. PubMed ID: 26053228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.