These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35939826)

  • 1. Application of Quantum Chemical Topology Force Field FFLUX to Condensed Matter Simulations: Liquid Water.
    Symons BCB; Popelier PLA
    J Chem Theory Comput; 2022 Sep; 18(9):5577-5588. PubMed ID: 35939826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DL_FFLUX: A Parallel, Quantum Chemical Topology Force Field.
    Symons BCB; Bane MK; Popelier PLA
    J Chem Theory Comput; 2021 Nov; 17(11):7043-7055. PubMed ID: 34617748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the many-body nature of intramolecular forces in FFLUX and its implications.
    Konovalov A; Symons BCB; Popelier PLA
    J Comput Chem; 2021 Jan; 42(2):107-116. PubMed ID: 33107993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the FFLUX Force Field to Molecular Crystals: A Study of Formamide.
    Brown ML; Skelton JM; Popelier PLA
    J Chem Theory Comput; 2023 Nov; 19(21):7946-7959. PubMed ID: 37847867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FFLUX molecular simulations driven by atomic Gaussian process regression models.
    Manchev YT; Popelier PLA
    J Comput Chem; 2024 Jun; 45(15):1235-1246. PubMed ID: 38345165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics.
    Hughes ZE; Ren E; Thacker JCR; Symons BCB; Silva AF; Popelier PLA
    J Comput Chem; 2020 Mar; 41(7):619-628. PubMed ID: 31747059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FFLUX: Transferability of polarizable machine-learned electrostatics in peptide chains.
    Fletcher TL; Popelier PL
    J Comput Chem; 2017 May; 38(13):1005-1014. PubMed ID: 28295430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations.
    Brown ML; Skelton JM; Popelier PLA
    J Phys Chem A; 2023 Feb; 127(7):1702-1714. PubMed ID: 36756842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.
    Chu H; Peng X; Li Y; Zhang Y; Li G
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Noncovalent Interactions in Transfer Learning Gaussian Process Regression Models for Molecular Simulations.
    Brown ML; Isamura BK; Skelton JM; Popelier PLA
    J Chem Theory Comput; 2024 Jul; 20(14):5994-6008. PubMed ID: 38981081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multipole-based water potential with implicit polarization for biomolecular simulations.
    Walsh TR; Liang T
    J Comput Chem; 2009 Apr; 30(6):893-9. PubMed ID: 18785240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward amino acid typing for proteins in FFLUX.
    Fletcher TL; Popelier PL
    J Comput Chem; 2017 Mar; 38(6):336-345. PubMed ID: 27991680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Description of Potential Energy Surfaces of Molecules Using FFLUX Machine Learning Models.
    Hughes ZE; Thacker JCR; Wilson AL; Popelier PLA
    J Chem Theory Comput; 2019 Jan; 15(1):116-126. PubMed ID: 30507180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions.
    Di Pasquale N; Davie SJ; Popelier PLA
    J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field.
    Mauger N; Plé T; Lagardère L; Huppert S; Piquemal JP
    J Phys Chem B; 2022 Nov; 126(43):8813-8826. PubMed ID: 36270033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation.
    Burn MJ; Popelier PLA
    J Comput Chem; 2022 Dec; 43(31):2084-2098. PubMed ID: 36165338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.