BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35939977)

  • 1. An automatic detection method of cerebral aneurysms in time-of-flight magnetic resonance angiography images based on attention 3D U-Net.
    Chen G; Meng C; Ruoyu D; Dongdong W; Liqin Y; Wei X; Yuxin L; Daoying G
    Comput Methods Programs Biomed; 2022 Oct; 225():106998. PubMed ID: 35939977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research.
    Chen G; Yifang B; Jiajun Z; Dongdong W; Zhiyong Z; Ruoyu D; Bin D; Sirong P; Daoying G; Meng C; Yakang D; Yuxin L
    Eur Radiol; 2023 May; 33(5):3532-3543. PubMed ID: 36725720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network.
    Chen G; Wei X; Lei H; Liqin Y; Yuxin L; Yakang D; Daoying G
    Biomed Eng Online; 2020 May; 19(1):38. PubMed ID: 32471439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system to detect cerebral aneurysms in multimodality angiographic data sets.
    Hentschke CM; Beuing O; Paukisch H; Scherlach C; Skalej M; Tönnies KD
    Med Phys; 2014 Sep; 41(9):091904. PubMed ID: 25186391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net.
    Claux F; Baudouin M; Bogey C; Rouchaud A
    J Neuroradiol; 2023 Feb; 50(1):9-15. PubMed ID: 35307554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge.
    Timmins KM; van der Schaaf IC; Bennink E; Ruigrok YM; An X; Baumgartner M; Bourdon P; De Feo R; Noto TD; Dubost F; Fava-Sanches A; Feng X; Giroud C; Group I; Hu M; Jaeger PF; Kaiponen J; Klimont M; Li Y; Li H; Lin Y; Loehr T; Ma J; Maier-Hein KH; Marie G; Menze B; Richiardi J; Rjiba S; Shah D; Shit S; Tohka J; Urruty T; Walińska U; Yang X; Yang Y; Yin Y; Velthuis BK; Kuijf HJ
    Neuroimage; 2021 Sep; 238():118216. PubMed ID: 34052465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall Enhancement of the Intracranial Aneurysms Revealed by Magnetic Resonance Vessel Wall Imaging Using Three-Dimensional Turbo Spin-Echo Sequence with Motion-Sensitized Driven-Equilibrium: A Sign of Ruptured Aneurysm?
    Nagahata S; Nagahata M; Obara M; Kondo R; Minagawa N; Sato S; Sato S; Mouri W; Saito S; Kayama T
    Clin Neuroradiol; 2016 Sep; 26(3):277-83. PubMed ID: 25332151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DSA Image Analysis of Clinical Features and Nursing Care of Cerebral Aneurysm Patients Based on the Deep Learning Algorithm.
    Wang J; Ti L; Sun X; Yang R; Zhang N; Sun K
    Scanning; 2022; 2022():8485651. PubMed ID: 36034470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
    Law MW; Chung AC
    IEEE Trans Image Process; 2013 Mar; 22(3):845-59. PubMed ID: 22955902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) and contrast-enhanced MRA of intracranial aneurysms treated with platinum coils.
    Wikström J; Ronne-Engström E; Gal G; Enblad P; Tovi M
    Acta Radiol; 2008 Mar; 49(2):190-6. PubMed ID: 18300146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA.
    Ham S; Seo J; Yun J; Bae YJ; Kim T; Sunwoo L; Yoo S; Jung SC; Kim JW; Kim N
    Sci Rep; 2023 Jul; 13(1):12018. PubMed ID: 37491504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography.
    Stember JN; Chang P; Stember DM; Liu M; Grinband J; Filippi CG; Meyers P; Jambawalikar S
    J Digit Imaging; 2019 Oct; 32(5):808-815. PubMed ID: 30511281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage.
    Howard BM; Hu R; Barrow JW; Barrow DL
    Neurosurg Focus; 2019 Dec; 47(6):E20. PubMed ID: 31786554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.