These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 35940004)
1. Signal-enhanced electrochemiluminescence strategy using iron-based metal-organic frameworks modified with carboxylated Ru(II) complexes for neuron-specific enolase detection. Li C; Li Y; Zhang Y; Zhao G; Wang Y; Wang H; Wang H; Xu R; Wei Q Biosens Bioelectron; 2022 Nov; 215():114605. PubMed ID: 35940004 [TBL] [Abstract][Full Text] [Related]
2. Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on "dual-potential" emitter Ru(bpy) Dong X; Du Y; Zhao G; Cao W; Fan D; Kuang X; Wei Q; Ju H Biosens Bioelectron; 2021 Nov; 192():113505. PubMed ID: 34298497 [TBL] [Abstract][Full Text] [Related]
3. Multiple signal-enhanced electrochemiluminescence aptamer sensors based on carboxylated ruthenium (II) complexes for acetamiprid detection. Li C; Zhang B; Wu Z; Liu Y; Xu R; Wang Y; Zhang Y; Wei Q Anal Chim Acta; 2024 Jun; 1309():342677. PubMed ID: 38772666 [TBL] [Abstract][Full Text] [Related]
4. High-Efficiency CNNS@NH Jiang X; Wang H; Chai Y; Shi W; Yuan R Anal Chem; 2020 Jul; 92(13):8992-9000. PubMed ID: 32495624 [TBL] [Abstract][Full Text] [Related]
5. Ru(II)-modified metal organic framework as excellent electrochemiluminescence emitter for ultrasensitive nicotine detection. Shao T; Song X; Li P; Sun S; Wang D; Wei W Talanta; 2023 Jul; 259():124539. PubMed ID: 37084603 [TBL] [Abstract][Full Text] [Related]
6. Triple signal-enhanced electrochemiluminescence strategy using iron-based metal-organic frameworks modified with Ru(II) complexes for carcino-embryonic antigen detection. Zhang D; Gao M; Xue X; Ren X; Feng R; Wu D; Liu X; Wei Q Talanta; 2024 Jan; 267():125239. PubMed ID: 37776802 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive electrochemiluminescence immunosensor for the detection of amyloid-β proteins based on resonance energy transfer between g-C Fang J; Zhao G; Dong X; Li X; Miao J; Wei Q; Cao W Biosens Bioelectron; 2019 Oct; 142():111517. PubMed ID: 31349185 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive competitive method-based electrochemiluminescence immunosensor for diethylstilbestrol detection based on Ru(bpy) Dong X; Zhao G; Liu L; Li X; Wei Q; Cao W Biosens Bioelectron; 2018 Jul; 110():201-206. PubMed ID: 29625327 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Yan M; Ye J; Zhu Q; Zhu L; Huang J; Yang X Anal Chem; 2019 Aug; 91(15):10156-10163. PubMed ID: 31283192 [TBL] [Abstract][Full Text] [Related]
10. Electrochemiluminescence resonance energy transfer between a Ru-ZnMOF self-enhanced luminophore and a double quencher ZnONF@PDA to detect NSE. Yang J; Qin D; Wang N; Wu Y; Fang K; Deng B Analyst; 2023 Sep; 148(18):4539-4547. PubMed ID: 37585262 [TBL] [Abstract][Full Text] [Related]
11. Highly Electroactive Co Jia H; Zhang N; Kuang X; Ren X; Wu D; Ma H; Wei Q; Ju H Anal Chem; 2024 Jul; 96(27):11044-11051. PubMed ID: 38937378 [TBL] [Abstract][Full Text] [Related]
12. Double electrochemiluminescence quenching effects of Fe Wang C; Zhang N; Wei D; Feng R; Fan D; Hu L; Wei Q; Ju H Biosens Bioelectron; 2019 Oct; 142():111521. PubMed ID: 31352225 [TBL] [Abstract][Full Text] [Related]
13. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C Hu L; Shi T; Chen J; Cui Q; Yu H; Wu D; Ma H; Wei Q; Ju H Biosens Bioelectron; 2023 Apr; 226():115132. PubMed ID: 36791617 [TBL] [Abstract][Full Text] [Related]
14. Dual Signal-Enhanced Electrochemiluminescence Strategy Based on Functionalized Biochar for Detecting Aflatoxin B1. Tian L; Shi Y; Song Y; Guan H; Li Y; Xu R Biosensors (Basel); 2023 Aug; 13(9):. PubMed ID: 37754080 [TBL] [Abstract][Full Text] [Related]
15. A potential-resolved electrochemiluminescence resonance energy transfer strategy for the simultaneous detection of neuron-specific enolase and the cytokeratin 19 fragment. Mo G; He X; Qin D; Jiang X; Zheng X; Deng B Analyst; 2021 Feb; 146(4):1334-1339. PubMed ID: 33367307 [TBL] [Abstract][Full Text] [Related]
16. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125. Dong X; Zhao G; Li X; Miao J; Fang J; Wei Q; Cao W Mikrochim Acta; 2019 Nov; 186(12):811. PubMed ID: 31745662 [TBL] [Abstract][Full Text] [Related]
17. A sandwich electrochemiluminescence immunoassay based on 1T-MoS Qu L; Zhao W; Liu J; Wang J; Li J; Pan H Talanta; 2024 Mar; 269():125412. PubMed ID: 37984234 [TBL] [Abstract][Full Text] [Related]
18. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles. Wang G; Jin F; Dai N; Zhong Z; Qing Y; Li M; Yuan R; Wang D Anal Biochem; 2012 Mar; 422(1):7-13. PubMed ID: 22230283 [TBL] [Abstract][Full Text] [Related]
19. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in the UiO-67 Metal-Organic Framework and Gold Nanoparticles for Insulin Detection. Zhao G; Wang Y; Li X; Dong X; Wang H; Du B; Cao W; Wei Q ACS Appl Mater Interfaces; 2018 Jul; 10(27):22932-22938. PubMed ID: 29916688 [TBL] [Abstract][Full Text] [Related]
20. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a g-C Wang Y; Zhang Y; Sha H; Xiong X; Jia N ACS Appl Mater Interfaces; 2019 Oct; 11(40):36299-36306. PubMed ID: 31514493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]