These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 35940288)

  • 1. Efficient elimination of airborne pathogens: a study on aerosolized Mycobacterium tuberculosis and SARS-CoV-2 using ZeBox technology.
    Narayan R; Kundu D; Ghatak A; Tripathi S; Datta S
    J Hosp Infect; 2022 Nov; 129():17-21. PubMed ID: 35940288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of a novel, non-intrusive, continuous-use air decontamination technology to reduce microbial contamination in clinical settings: a multi-centric study.
    Nagaraj S; Chandrasingh S; Jose S; Sofia B; Sampath S; Krishna B; Menon I; Kundu D; Parekh S; Madival D; Nandi V; Ghatak A
    J Hosp Infect; 2022 May; 123():15-22. PubMed ID: 35181400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel non intrusive continuous use ZeBox technology to trap and kill airborne microbes.
    Phadke KS; Madival DG; Venkataraman J; Kundu D; Ramanujan KS; Holla N; Arakeri J; Tomar G; Datta S; Ghatak A
    Sci Rep; 2021 Nov; 11(1):22779. PubMed ID: 34815494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacterium tuberculosis H37Ra particles.
    Tobias HJ; Schafer MP; Pitesky M; Fergenson DP; Horn J; Frank M; Gard EE
    Appl Environ Microbiol; 2005 Oct; 71(10):6086-95. PubMed ID: 16204525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers.
    Schinköthe J; Scheinemann HA; Diederich S; Freese H; Eschbaumer M; Teifke JP; Reiche S
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid thermal inactivation of aerosolized SARS-CoV-2.
    Canpolat M; Bozkurt S; Şakalar Ç; Çoban AY; Karaçaylı D; Toker E
    J Virol Methods; 2022 Mar; 301():114465. PubMed ID: 35033579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 265-Nanometer High-Power Deep-UV Light-Emitting Diode Rapidly Inactivates SARS-CoV-2 Aerosols.
    Ueki H; Ito M; Furusawa Y; Yamayoshi S; Inoue SI; Kawaoka Y
    mSphere; 2022 Apr; 7(2):e0094121. PubMed ID: 35475734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade Immune Mechanisms of Protection against Mycobacterium tuberculosis (IMPAc-TB): study protocol for the Household Contact Study in the Western Cape, South Africa.
    Hiemstra AM; MacDonald CE; van Rensburg IC; Stanley K; Maasdorp E; Mc Anda S; Tönsing S; Shaw JA; Tromp G; van der Spuy GD; Urdahl KB; Lewinsohn DM; Kuivaniemi H; Du Plessis N; Malherbe ST; Walzl G
    BMC Infect Dis; 2022 Apr; 22(1):381. PubMed ID: 35428268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and Efficacy of Imatinib for Hospitalized Adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial.
    Emadi A; Chua JV; Talwani R; Bentzen SM; Baddley J
    Trials; 2020 Oct; 21(1):897. PubMed ID: 33115543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Hospitals: Effects of Aerosol-Generating Procedures, HEPA-Filtration Units, Patient Viral Load, and Physical Distance.
    Thuresson S; Fraenkel CJ; Sasinovich S; Soldemyr J; Widell A; Medstrand P; Alsved M; Löndahl J
    Clin Infect Dis; 2022 Aug; 75(1):e89-e96. PubMed ID: 35226740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confirmation of radiant catalytic ionization efficacy for airborne SARS-CoV-2 elimination indoors using "COVID19 traps".
    Orenes-Piñero E; Moreno-Docón A; Candela-González J; Navas-Carrillo D; Ortega-García JA; Ramírez P
    J Infect Public Health; 2022 Dec; 15(12):1551-1554. PubMed ID: 36442385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatal central nervous system co-infection with SARS-CoV-2 and tuberculosis in a healthy child.
    Freij BJ; Gebara BM; Tariq R; Wang AM; Gibson J; El-Wiher N; Krasan G; Patek PM; Levasseur KA; Amin M; Fullmer JM
    BMC Pediatr; 2020 Sep; 20(1):429. PubMed ID: 32907595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosis of tuberculosis among COVID-19 suspected cases in Ghana.
    Afum T; Asare P; Asante-Poku A; Darko-Otchere I; Morgan PA; Bedeley E; Asandem DA; Musah AB; Siam IM; Tetteh P; Adusi-Poku Y; Frimpong-Manso R; Bonney JHK; Ampofo W; Yeboah-Manu D
    PLoS One; 2021; 16(12):e0261849. PubMed ID: 34962960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among PCR-positive air samples from hospital rooms and community isolation facilities.
    Ong SWX; Tan YK; Coleman KK; Tan BH; Leo YS; Wang DL; Ng CG; Ng OT; Wong MSY; Marimuthu K
    Infect Control Hosp Epidemiol; 2021 Nov; 42(11):1327-1332. PubMed ID: 33487210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuberculosis/COVID-19 co-infection detected in a single sputum sample using a rapid molecular test.
    Guirelli AO; Bispo TR; Colpas DR; de Campos IB; Chimara E; Cergole-Novella MC; Rodart IF; Dos Santos Candido V; Segura-Ramírez PJ; Dos Santos Menezes Gaiotto Daros V; Dos Santos Carmo AM
    Braz J Microbiol; 2022 Jun; 53(2):633-639. PubMed ID: 35107805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Link between SARS-CoV-2 emissions and airborne concentrations: Closing the gap in understanding.
    Buonanno G; Robotto A; Brizio E; Morawska L; Civra A; Corino F; Lembo D; Ficco G; Stabile L
    J Hazard Mater; 2022 Apr; 428():128279. PubMed ID: 35063838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of SARS-CoV-2 and
    Shah T; Shah Z; Yasmeen N; Baloch Z; Xia X
    Front Immunol; 2022; 13():909011. PubMed ID: 35784278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of portable filtration units in reducing aerosolized particles in the size range of Mycobacterium tuberculosis.
    Rutala WA; Jones SM; Worthington JM; Reist PC; Weber DJ
    Infect Control Hosp Epidemiol; 1995 Jul; 16(7):391-8. PubMed ID: 7673644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of SARS-CoV-2 (COVID-19) transmission in residential aged care using ultraviolet light (PETRA): a two-arm crossover randomised controlled trial protocol.
    Brass A; Shoubridge AP; Crotty M; Morawska L; Bell SC; Qiao M; Woodman RJ; Whitehead C; Inacio MC; Miller C; Corlis M; Larby N; Elms L; Sims SK; Taylor SL; Flynn E; Papanicolas LE; Rogers GB
    BMC Infect Dis; 2021 Sep; 21(1):967. PubMed ID: 34535091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne SARS-CoV-2 surveillance in hospital environment using high-flowrate air samplers and its comparison to surface sampling.
    Ang AX; Luhung I; Ahidjo BA; Drautz-Moses DI; Tambyah PA; Mok CK; Lau KJ; Tham SM; Chu JJH; Allen DM; Schuster SC
    Indoor Air; 2022 Jan; 32(1):e12930. PubMed ID: 34519380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.