These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35940711)

  • 1. Circadian and visual photometry.
    Price LLA; Blattner P
    Prog Brain Res; 2022; 273(1):1-11. PubMed ID: 35940711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle.
    Zhao X; Pack W; Khan NW; Wong KY
    J Neurosci; 2016 Apr; 36(15):4209-17. PubMed ID: 27076420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells.
    Güler AD; Altimus CM; Ecker JL; Hattar S
    Cold Spring Harb Symp Quant Biol; 2007; 72():509-15. PubMed ID: 18522518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strange vision: ganglion cells as circadian photoreceptors.
    Berson DM
    Trends Neurosci; 2003 Jun; 26(6):314-20. PubMed ID: 12798601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device.
    Cao D; Barrionuevo PA
    Chronobiol Int; 2015 Mar; 32(2):270-80. PubMed ID: 25290040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Lighting Environment, Its Metrology, and Non-visual Responses.
    Schlangen LJM; Price LLA
    Front Neurol; 2021; 12():624861. PubMed ID: 33746879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions.
    Schmidt TM; Chen SK; Hattar S
    Trends Neurosci; 2011 Nov; 34(11):572-80. PubMed ID: 21816493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse types of ganglion cell photoreceptors in the mammalian retina.
    Sand A; Schmidt TM; Kofuji P
    Prog Retin Eye Res; 2012 Jul; 31(4):287-302. PubMed ID: 22480975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.
    Gooley JJ; Rajaratnam SM; Brainard GC; Kronauer RE; Czeisler CA; Lockley SW
    Sci Transl Med; 2010 May; 2(31):31ra33. PubMed ID: 20463367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melanopsin-based brightness discrimination in mice and humans.
    Brown TM; Tsujimura S; Allen AE; Wynne J; Bedford R; Vickery G; Vugler A; Lucas RJ
    Curr Biol; 2012 Jun; 22(12):1134-41. PubMed ID: 22633808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melanopsin driven enhancement of cone-mediated visual processing.
    Zele AJ; Adhikari P; Cao D; Feigl B
    Vision Res; 2019 Jul; 160():72-81. PubMed ID: 31078661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsically photosensitive retinal ganglion cells.
    Pickard GE; Sollars PJ
    Sci China Life Sci; 2010 Jan; 53(1):58-67. PubMed ID: 20596956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.
    Güler AD; Ecker JL; Lall GS; Haq S; Altimus CM; Liao HW; Barnard AR; Cahill H; Badea TC; Zhao H; Hankins MW; Berson DM; Lucas RJ; Yau KW; Hattar S
    Nature; 2008 May; 453(7191):102-5. PubMed ID: 18432195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
    Altimus CM; Güler AD; Villa KL; McNeill DS; Legates TA; Hattar S
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19998-20003. PubMed ID: 19060203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration.
    St Hilaire MA; Ámundadóttir ML; Rahman SA; Rajaratnam SMW; Rüger M; Brainard GC; Czeisler CA; Andersen M; Gooley JJ; Lockley SW
    Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2205301119. PubMed ID: 36508661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanopsin is required for non-image-forming photic responses in blind mice.
    Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB
    Science; 2003 Jul; 301(5632):525-7. PubMed ID: 12829787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.
    Dacey DM; Liao HW; Peterson BB; Robinson FR; Smith VC; Pokorny J; Yau KW; Gamlin PD
    Nature; 2005 Feb; 433(7027):749-54. PubMed ID: 15716953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.