BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35940845)

  • 41. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph.
    Garg S; Aach J; Li H; Sebenius I; Durbin R; Church G
    Bioinformatics; 2020 Apr; 36(8):2385-2392. PubMed ID: 31860070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revisiting genomes of non-model species with long reads yields new insights into their biology and evolution.
    Guiglielmoni N; Villegas LI; Kirangwa J; Schiffer PH
    Front Genet; 2024; 15():1308527. PubMed ID: 38384712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast Short Read De-Novo Assembly Using Overlap-Layout-Consensus Approach.
    Bayat A; Deshpande NP; Wilkins MR; Parameswaran S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):334-338. PubMed ID: 30307874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops.
    Jung H; Jeon MS; Hodgett M; Waterhouse P; Eyun SI
    J Agric Food Chem; 2020 Jul; 68(29):7670-7677. PubMed ID: 32530283
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies.
    Edge P; Bafna V; Bansal V
    Genome Res; 2017 May; 27(5):801-812. PubMed ID: 27940952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data.
    Aguiar D; Istrail S
    J Comput Biol; 2012 Jun; 19(6):577-90. PubMed ID: 22697235
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Draft Assembly of
    Cui C; Herlihy JH; Bombarely A; McDowell JM; Haak DC
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1559-1563. PubMed ID: 31479390
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long Range Sequencing and Validation of Insect Genome Assemblies.
    Saha S
    Methods Mol Biol; 2019; 1858():33-44. PubMed ID: 30414109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. De novo assembly of human genome at single-cell levels.
    Xie H; Li W; Hu Y; Yang C; Lu J; Guo Y; Wen L; Tang F
    Nucleic Acids Res; 2022 Jul; 50(13):7479-7492. PubMed ID: 35819189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A hybrid approach for de novo human genome sequence assembly and phasing.
    Mostovoy Y; Levy-Sakin M; Lam J; Lam ET; Hastie AR; Marks P; Lee J; Chu C; Lin C; Džakula Ž; Cao H; Schlebusch SA; Giorda K; Schnall-Levin M; Wall JD; Kwok PY
    Nat Methods; 2016 Jul; 13(7):587-90. PubMed ID: 27159086
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HapTree: a novel Bayesian framework for single individual polyplotyping using NGS data.
    Berger E; Yorukoglu D; Peng J; Berger B
    PLoS Comput Biol; 2014 Mar; 10(3):e1003502. PubMed ID: 24675685
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extraction and selection of high-molecular-weight DNA for long-read sequencing from Chlamydomonas reinhardtii.
    Chaux F; Agier N; Eberhard S; Xu Z
    PLoS One; 2024; 19(2):e0297014. PubMed ID: 38330024
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The use of Oxford Nanopore native barcoding for complete genome assembly.
    Bayliss SC; Hunt VL; Yokoyama M; Thorpe HA; Feil EJ
    Gigascience; 2017 Mar; 6(3):1-6. PubMed ID: 28327913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How can a high-quality genome assembly help plant breeders?
    Benevenuto J; Ferrão LFV; Amadeu RR; Munoz P
    Gigascience; 2019 Jun; 8(6):. PubMed ID: 31184361
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long-read human genome sequencing and its applications.
    Logsdon GA; Vollger MR; Eichler EE
    Nat Rev Genet; 2020 Oct; 21(10):597-614. PubMed ID: 32504078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.