These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35940845)

  • 61. Telomere length de novo assembly of all 7 chromosomes and mitogenome sequencing of the model entomopathogenic fungus, Metarhizium brunneum, by means of a novel assembly pipeline.
    Saud Z; Kortsinoglou AM; Kouvelis VN; Butt TM
    BMC Genomics; 2021 Jan; 22(1):87. PubMed ID: 33509090
    [TBL] [Abstract][Full Text] [Related]  

  • 62. BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach.
    Wang A; Wang Z; Li Z; Li LM
    Bioinformatics; 2018 Jun; 34(12):2019-2028. PubMed ID: 29346504
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.
    Mao Q; Ciotlos S; Zhang RY; Ball MP; Chin R; Carnevali P; Barua N; Nguyen S; Agarwal MR; Clegg T; Connelly A; Vandewege W; Zaranek AW; Estep PW; Church GM; Drmanac R; Peters BA
    Gigascience; 2016 Oct; 5(1):42. PubMed ID: 27724973
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing.
    Amini S; Pushkarev D; Christiansen L; Kostem E; Royce T; Turk C; Pignatelli N; Adey A; Kitzman JO; Vijayan K; Ronaghi M; Shendure J; Gunderson KL; Steemers FJ
    Nat Genet; 2014 Dec; 46(12):1343-9. PubMed ID: 25326703
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Haplotype-Phased Synthetic Long Reads from Short-Read Sequencing.
    Stapleton JA; Kim J; Hamilton JP; Wu M; Irber LC; Maddamsetti R; Briney B; Newton L; Burton DR; Brown CT; Chan C; Buell CR; Whitehead TA
    PLoS One; 2016; 11(1):e0147229. PubMed ID: 26789840
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Haplotype-resolved assembly of a pig genome using single-sperm sequencing.
    Niu Y; Fan X; Yang Y; Li J; Lian J; Wang L; Zhang Y; Tang Y; Tang Z
    Commun Biol; 2024 Jun; 7(1):738. PubMed ID: 38890535
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Building near-complete plant genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2020 Apr; 54():26-33. PubMed ID: 31981929
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases.
    Greer SU; Nadauld LD; Lau BT; Chen J; Wood-Bouwens C; Ford JM; Kuo CJ; Ji HP
    Genome Med; 2017 Jun; 9(1):57. PubMed ID: 28629429
    [TBL] [Abstract][Full Text] [Related]  

  • 70. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape?
    Hamim I; Sekine KT; Komatsu K
    Plant Mol Biol; 2022 Dec; 110(6):469-484. PubMed ID: 35962900
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Improvements in Genomic Technologies: Application to Crop Genomics.
    Yuan Y; Bayer PE; Batley J; Edwards D
    Trends Biotechnol; 2017 Jun; 35(6):547-558. PubMed ID: 28284542
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combination of long- and short-read sequencing fully resolves complex repeats of herpes simplex virus 2 strain MS complete genome.
    López-Muñoz AD; Rastrojo A; Kropp KA; Viejo-Borbolla A; Alcamí A
    Microb Genom; 2021 Jun; 7(6):. PubMed ID: 34170814
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Assessing the impact of exact reads on reducing the error rate of read mapping.
    Salari F; Zare-Mirakabad F; Sadeghi M; Rokni-Zadeh H
    BMC Bioinformatics; 2018 Nov; 19(1):406. PubMed ID: 30400807
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New Approaches for Genome Assembly and Scaffolding.
    Rice ES; Green RE
    Annu Rev Anim Biosci; 2019 Feb; 7():17-40. PubMed ID: 30485757
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.
    Du J; Bjornson RD; Zhang ZD; Kong Y; Snyder M; Gerstein MB
    PLoS Comput Biol; 2009 Jul; 5(7):e1000432. PubMed ID: 19593373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Fosmid Pool-Based Next Generation Sequencing Approach to Haplotype-Resolve Whole Genomes.
    Suk EK; Schulz S; Mentrup B; Huebsch T; Duitama J; Hoehe MR
    Methods Mol Biol; 2017; 1551():223-269. PubMed ID: 28138850
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single haplotype assembly of the human genome from a hydatidiform mole.
    Steinberg KM; Schneider VA; Graves-Lindsay TA; Fulton RS; Agarwala R; Huddleston J; Shiryev SA; Morgulis A; Surti U; Warren WC; Church DM; Eichler EE; Wilson RK
    Genome Res; 2014 Dec; 24(12):2066-76. PubMed ID: 25373144
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.
    Yang LA; Chang YJ; Chen SH; Lin CY; Ho JM
    BMC Genomics; 2019 Apr; 19(Suppl 9):238. PubMed ID: 30999844
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genetic variation and the de novo assembly of human genomes.
    Chaisson MJ; Wilson RK; Eichler EE
    Nat Rev Genet; 2015 Nov; 16(11):627-40. PubMed ID: 26442640
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assembly-free discovery of human novel sequences using long reads.
    Li Q; Yan B; Lam TW; Luo R
    DNA Res; 2022 Dec; 29(6):. PubMed ID: 36308393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.