These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Stassen SV; Siu DMD; Lee KCM; Ho JWK; So HKH; Tsia KK Bioinformatics; 2020 May; 36(9):2778-2786. PubMed ID: 31971583 [TBL] [Abstract][Full Text] [Related]
3. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data. Ren X; Zheng L; Zhang Z Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000 [TBL] [Abstract][Full Text] [Related]
4. EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data. Li S; Li Y; Sun Y; Li Y; Chen X; Tang S; Chen S Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38588573 [TBL] [Abstract][Full Text] [Related]
5. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning. Li X; Zhang S; Wong KC Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898 [TBL] [Abstract][Full Text] [Related]
10. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters. Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249 [TBL] [Abstract][Full Text] [Related]
11. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing. Cui T; Wang T BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769 [TBL] [Abstract][Full Text] [Related]
12. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets. Andreatta M; Berenstein AJ; Carmona SJ Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562 [TBL] [Abstract][Full Text] [Related]
13. Scellpam: an R package/C++ library to perform parallel partitioning around medoids on scRNAseq data sets. Domingo J; Leon T; Dura E BMC Bioinformatics; 2023 Sep; 24(1):342. PubMed ID: 37710192 [TBL] [Abstract][Full Text] [Related]
14. SCHNEL: scalable clustering of high dimensional single-cell data. Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821 [TBL] [Abstract][Full Text] [Related]
15. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering. Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457 [TBL] [Abstract][Full Text] [Related]
16. PyLiger: scalable single-cell multi-omic data integration in Python. Lu L; Welch JD Bioinformatics; 2022 May; 38(10):2946-2948. PubMed ID: 35561174 [TBL] [Abstract][Full Text] [Related]
17. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Lin P; Troup M; Ho JW Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406 [TBL] [Abstract][Full Text] [Related]