These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 35941103)
21. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data. Zeng P; Lin Z PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420 [TBL] [Abstract][Full Text] [Related]
22. Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks. Cho H; Berger B; Peng J Cell Syst; 2018 Aug; 7(2):185-191.e4. PubMed ID: 29936184 [TBL] [Abstract][Full Text] [Related]
23. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data. Zeng P; Wangwu J; Lin Z Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962 [TBL] [Abstract][Full Text] [Related]
24. AMC: accurate mutation clustering from single-cell DNA sequencing data. Yu Z; Du F Bioinformatics; 2022 Mar; 38(6):1732-1734. PubMed ID: 34951625 [TBL] [Abstract][Full Text] [Related]
26. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662 [TBL] [Abstract][Full Text] [Related]
27. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration. Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968 [TBL] [Abstract][Full Text] [Related]
28. Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis. Ben-Kiki O; Bercovich A; Lifshitz A; Tanay A Genome Biol; 2022 Apr; 23(1):100. PubMed ID: 35440087 [TBL] [Abstract][Full Text] [Related]
29. Are dropout imputation methods for scRNA-seq effective for scATAC-seq data? Liu Y; Zhang J; Wang S; Zeng X; Zhang W Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718405 [TBL] [Abstract][Full Text] [Related]
30. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
31. pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells. Ferchen K; Salomonis N; Grimes HL Bioinformatics; 2023 May; 39(5):. PubMed ID: 37097893 [TBL] [Abstract][Full Text] [Related]
32. Scarf osteotomy for hallux valgus correction. Local anatomy, surgical technique, and combination with other forefoot procedures. Barouk LS Foot Ankle Clin; 2000 Sep; 5(3):525-58. PubMed ID: 11232396 [TBL] [Abstract][Full Text] [Related]
33. scAnnoX: an R package integrating multiple public tools for single-cell annotation. Huang X; Liu R; Yang S; Chen X; Li H PeerJ; 2024; 12():e17184. PubMed ID: 38560451 [TBL] [Abstract][Full Text] [Related]
35. GiniClust3: a fast and memory-efficient tool for rare cell type identification. Dong R; Yuan GC BMC Bioinformatics; 2020 Apr; 21(1):158. PubMed ID: 32334526 [TBL] [Abstract][Full Text] [Related]
36. scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics. Song Q; Su J; Zhang W Nat Commun; 2021 Jun; 12(1):3826. PubMed ID: 34158507 [TBL] [Abstract][Full Text] [Related]
37. SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier. Hu X; Friedberg I Gigascience; 2019 Oct; 8(10):. PubMed ID: 31648300 [TBL] [Abstract][Full Text] [Related]
38. Helmsman: fast and efficient mutation signature analysis for massive sequencing datasets. Carlson J; Li JZ; Zöllner S BMC Genomics; 2018 Nov; 19(1):845. PubMed ID: 30486787 [TBL] [Abstract][Full Text] [Related]
39. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
40. SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement. Liang Z; Li M; Zheng R; Tian Y; Yan X; Chen J; Wu FX; Wang J Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):282-291. PubMed ID: 33647482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]