BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35941216)

  • 1. Humidity gradients in the air spaces of leaves.
    Wong SC; Canny MJ; Holloway-Phillips M; Stuart-Williams H; Cernusak LA; Márquez DA; Farquhar GD
    Nat Plants; 2022 Aug; 8(8):971-978. PubMed ID: 35941216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions : II. The significance of leaf water status and internal carbon dioxide concentration.
    Schulze E-; Lange OL; Kappen L; Evenari M; Buschbom U
    Oecologia; 1975 Sep; 18(3):219-233. PubMed ID: 28308679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal heterogeneity in responses to humidity and temperature: Testing a mechanistic model.
    Sweet KJ; Peak D; Mott KA
    Plant Cell Environ; 2017 Nov; 40(11):2771-2779. PubMed ID: 28777880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm?
    Rockwell FE; Holbrook NM; Jain P; Huber AE; Sen S; Stroock AD
    Ann Bot; 2022 Sep; 130(3):301-316. PubMed ID: 35896037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas-exchange analysis of chloroplastic fructose-1,6-bisphosphatase antisense potatoes at different air humidities and at elevated CO(2).
    Muschak M; Willmitzer L; Fisahn J
    Planta; 1999 Jul; 209(1):104-11. PubMed ID: 10467036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsaturation in the air spaces of leaves and its implications.
    Cernusak LA; Wong SC; Stuart-Williams H; Márquez DA; Pontarin N; Farquhar GD
    Plant Cell Environ; 2024 Jun; ():. PubMed ID: 38867619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral gas diffusion inside leaves.
    Pieruschka R; Schurr U; Jahnke S
    J Exp Bot; 2005 Mar; 56(413):857-64. PubMed ID: 15668225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stomatal responses to humidity and temperature in darkness.
    Mott KA; Peak D
    Plant Cell Environ; 2010 Jul; 33(7):1084-90. PubMed ID: 20199627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C
    Pathare VS; Koteyeva N; Cousins AB
    New Phytol; 2020 Jan; 225(1):169-182. PubMed ID: 31400232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsaturation of vapour pressure inside leaves of two conifer species.
    Cernusak LA; Ubierna N; Jenkins MW; Garrity SR; Rahn T; Powers HH; Hanson DT; Sevanto S; Wong SC; McDowell NG; Farquhar GD
    Sci Rep; 2018 May; 8(1):7667. PubMed ID: 29769592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.
    Raschke K; Resemann A
    Planta; 1986 Sep; 168(4):546-58. PubMed ID: 24232332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning.
    Pons TL; Welschen RA
    Tree Physiol; 2003 Oct; 23(14):937-47. PubMed ID: 12952780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-based studies of diffusion through stomata of different architecture.
    Roth-Nebelsick A
    Ann Bot; 2007 Jul; 100(1):23-32. PubMed ID: 17483152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research.
    Nguyen TH; Silva-Alvim FAL; Hills A; Blatt MR
    Plant Cell Environ; 2023 Nov; 46(11):3644-3658. PubMed ID: 37498151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M; Niinemets U; Cescatti A
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field.
    Niinemets U; Díaz-Espejo A; Flexas J; Galmés J; Warren CR
    J Exp Bot; 2009; 60(8):2249-70. PubMed ID: 19395391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the mesophyll on stomatal responses in amphistomatous leaves.
    Mott KA; Peak D
    Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesophyll conductance to CO2: current knowledge and future prospects.
    Flexas J; Ribas-Carbó M; Diaz-Espejo A; Galmés J; Medrano H
    Plant Cell Environ; 2008 May; 31(5):602-21. PubMed ID: 17996013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.