These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35941273)

  • 1. Extracellular vesicles derived from Wharton's Jelly mesenchymal stem cells inhibit the tumor environment via the miR-125b/HIF1α signaling pathway.
    Chang YH; Vuong CK; Ngo NH; Yamashita T; Ye X; Futamura Y; Fukushige M; Obata-Yasuoka M; Hamada H; Osaka M; Hiramatsu Y; Sakurai T; Ohneda O
    Sci Rep; 2022 Aug; 12(1):13550. PubMed ID: 35941273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model.
    Crain SK; Robinson SR; Thane KE; Davis AM; Meola DM; Barton BA; Yang VK; Hoffman AM
    Stem Cells Dev; 2019 Feb; 28(3):212-226. PubMed ID: 30412034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton's jelly mesenchymal stem cells (WJ-MSC).
    Prieto CP; Ortiz MC; Villanueva A; Villarroel C; Edwards SS; Elliott M; Lattus J; Aedo S; Meza D; Lois P; Palma V
    Stem Cell Res Ther; 2017 Feb; 8(1):43. PubMed ID: 28241866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Vesicle-Derived microRNAs of Human Wharton's Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis.
    Chinnici CM; Iannolo G; Cittadini E; Carreca AP; Nascari D; Timoneri F; Bella MD; Cuscino N; Amico G; Carcione C; Conaldi PG
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia with Wharton's jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34
    Zhao D; Liu L; Chen Q; Wang F; Li Q; Zeng Q; Huang J; Luo M; Li W; Zheng Y; Liu T
    Stem Cell Res Ther; 2018 Jun; 9(1):158. PubMed ID: 29895317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA Cargo in Wharton's Jelly MSC Small Extracellular Vesicles: Key Functionality to In Vitro Prevention and Treatment of Premature White Matter Injury.
    Tscherrig V; Cottagnoud S; Haesler V; Renz P; Surbek D; Schoeberlein A; Joerger-Messerli MS
    Stem Cell Rev Rep; 2023 Oct; 19(7):2447-2464. PubMed ID: 37523115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration.
    Tscherrig V; Steinfort M; Haesler V; Surbek D; Schoeberlein A; Joerger-Messerli MS
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells.
    Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y
    Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis.
    Lu CH; Chen YA; Ke CC; Chiu SJ; Jeng FS; Chen CC; Hsieh YJ; Yang BH; Chang CW; Wang FS; Liu RS
    Int J Nanomedicine; 2021; 16():7813-7830. PubMed ID: 34880610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circ6401, a novel circular RNA, is implicated in repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells through regulation of the miR-29b-1-5p/RAP1B axis.
    Shi Q; Sun B; Wang D; Zhu Y; Zhao X; Yang X; Zhang Y
    Stem Cell Res Ther; 2020 Dec; 11(1):520. PubMed ID: 33261656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of human Wharton's jelly mesenchymal stem cell paracrine signaling on keloid fibroblasts.
    Arno AI; Amini-Nik S; Blit PH; Al-Shehab M; Belo C; Herer E; Jeschke MG
    Stem Cells Transl Med; 2014 Mar; 3(3):299-307. PubMed ID: 24436441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular Vesicles Derived from Wharton's Jelly Mesenchymal Stem Cells Prevent and Resolve Programmed Cell Death Mediated by Perinatal Hypoxia-Ischemia in Neuronal Cells.
    Joerger-Messerli MS; Oppliger B; Spinelli M; Thomi G; di Salvo I; Schneider P; Schoeberlein A
    Cell Transplant; 2018 Jan; 27(1):168-180. PubMed ID: 29562785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of human Wharton's Jelly or adipose derived mesenchymal stem cells culture supernatant on endothelial cells angiogenesis].
    Liu XC; Wu SH; Wang WZ; Wei LY; Hao Q; Guo ZD; Wen YL; Kang J
    Zhonghua Yi Xue Za Zhi; 2020 Feb; 100(6):456-459. PubMed ID: 32146770
    [No Abstract]   [Full Text] [Related]  

  • 15. Thermostable Basic Fibroblast Growth Factor Enhances the Production and Activity of Human Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles.
    Park S; Kim S; Lim K; Shin Y; Song K; Kang GH; Kim DY; Shin HC; Cho SG
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal Stem Cell-derived Extracellular Vesicles Transmitting MicroRNA-34a-5p Suppress Tumorigenesis of Colorectal Cancer Through c-MYC/DNMT3a/PTEN Axis.
    Zhao J; Lin H; Huang K
    Mol Neurobiol; 2022 Jan; 59(1):47-60. PubMed ID: 34623601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism.
    Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells.
    Al Madhoun A; Marafie SK; Haddad D; Melhem M; Abu-Farha M; Ali H; Sindhu S; Atari M; Al-Mulla F
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension.
    Sharma M; Bellio MA; Benny M; Kulandavelu S; Chen P; Janjindamai C; Han C; Chang L; Sterling S; Williams K; Damianos A; Batlahally S; Kelly K; Aguilar-Caballero D; Zambrano R; Chen S; Huang J; Wu S; Hare JM; Schmidt A; Khan A; Young K
    Stem Cells Transl Med; 2022 Aug; 11(8):828-840. PubMed ID: 35758326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonic hedgehog (SHH) signaling improves the angiogenic potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC).
    Zavala G; Prieto CP; Villanueva AA; Palma V
    Stem Cell Res Ther; 2017 Sep; 8(1):203. PubMed ID: 28962669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.