BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35941392)

  • 1. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases.
    Overstreet JM; Gifford CC; Tang J; Higgins PJ; Samarakoon R
    Cell Mol Life Sci; 2022 Aug; 79(9):474. PubMed ID: 35941392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
    Higgins CE; Tang J; Mian BM; Higgins SP; Gifford CC; Conti DJ; Meldrum KK; Samarakoon R; Higgins PJ
    FASEB J; 2019 Oct; 33(10):10596-10606. PubMed ID: 31284746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAI-1 induction during kidney injury promotes fibrotic epithelial dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signaling.
    Gifford CC; Lian F; Tang J; Costello A; Goldschmeding R; Samarakoon R; Higgins PJ
    FASEB J; 2021 Jul; 35(7):e21725. PubMed ID: 34110636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor suppressor ataxia telangiectasia mutated functions downstream of TGF-β1 in orchestrating profibrotic responses.
    Overstreet JM; Samarakoon R; Cardona-Grau D; Goldschmeding R; Higgins PJ
    FASEB J; 2015 Apr; 29(4):1258-68. PubMed ID: 25480384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species.
    Samarakoon R; Dobberfuhl AD; Cooley C; Overstreet JM; Patel S; Goldschmeding R; Meldrum KK; Higgins PJ
    Cell Signal; 2013 Nov; 25(11):2198-209. PubMed ID: 23872073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity.
    Overstreet JM; Samarakoon R; Meldrum KK; Higgins PJ
    Cell Signal; 2014 Jul; 26(7):1427-36. PubMed ID: 24613410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease
    Patel S; Tang J; Overstreet JM; Anorga S; Lian F; Arnouk A; Goldschmeding R; Higgins PJ; Samarakoon R
    FASEB J; 2019 Sep; 33(9):9797-9810. PubMed ID: 31095421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGF-β1/p53 signaling in renal fibrogenesis.
    Higgins SP; Tang Y; Higgins CE; Mian B; Zhang W; Czekay RP; Samarakoon R; Conti DJ; Higgins PJ
    Cell Signal; 2018 Mar; 43():1-10. PubMed ID: 29191563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype.
    Anorga S; Overstreet JM; Falke LL; Tang J; Goldschmeding RG; Higgins PJ; Samarakoon R
    FASEB J; 2018 May; 32(5):2644-2657. PubMed ID: 29298862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses.
    Samarakoon R; Helo S; Dobberfuhl AD; Khakoo NS; Falke L; Overstreet JM; Goldschmeding R; Higgins PJ
    J Pathol; 2015 Aug; 236(4):421-32. PubMed ID: 25810340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b.
    Wang B; Jha JC; Hagiwara S; McClelland AD; Jandeleit-Dahm K; Thomas MC; Cooper ME; Kantharidis P
    Kidney Int; 2014 Feb; 85(2):352-61. PubMed ID: 24088962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO.
    Yang R; Xu X; Li H; Chen J; Xiang X; Dong Z; Zhang D
    Sci Rep; 2017 Feb; 7():43409. PubMed ID: 28240316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure.
    Su H; Ye C; Lei CT; Tang H; Zeng JY; Yi F; Zhang C
    FASEB J; 2020 Jan; 34(1):1620-1636. PubMed ID: 31914692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities.
    Gifford CC; Tang J; Costello A; Khakoo NS; Nguyen TQ; Goldschmeding R; Higgins PJ; Samarakoon R
    Clin Sci (Lond); 2021 Jan; 135(2):275-303. PubMed ID: 33480423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TGF-β1/p53/PAI-1 Signaling Axis in Vascular Senescence: Role of Caveolin-1.
    Samarakoon R; Higgins SP; Higgins CE; Higgins PJ
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31382626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation.
    Song MK; Lee JH; Ryoo IG; Lee SH; Ku SK; Kwak MK
    Free Radic Biol Med; 2019 Jul; 138():33-42. PubMed ID: 31059771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposite role of CD44-standard and CD44-variant-3 in tubular injury and development of renal fibrosis during chronic obstructive nephropathy.
    Rampanelli E; Rouschop KM; Claessen N; Teske GJ; Pals ST; Leemans JC; Florquin S
    Kidney Int; 2014 Sep; 86(3):558-69. PubMed ID: 24717295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway.
    Zhang L; Wang X; He S; Zhang F; Li Y
    J Ethnopharmacol; 2023 Jul; 311():116466. PubMed ID: 37031821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proximal Tubular
    Zhang C; Zheng Z; Xu K; Cheng G; Wu H; Liu J
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snai1-induced partial epithelial-mesenchymal transition orchestrates p53-p21-mediated G2/M arrest in the progression of renal fibrosis via NF-κB-mediated inflammation.
    Qi R; Wang J; Jiang Y; Qiu Y; Xu M; Rong R; Zhu T
    Cell Death Dis; 2021 Jan; 12(1):44. PubMed ID: 33414422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.