These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35941927)
1. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Alzyoud L; Ghattas MA; Atatreh N Drug Des Devel Ther; 2022; 16():2463-2478. PubMed ID: 35941927 [TBL] [Abstract][Full Text] [Related]
3. Targeting allosteric pockets of SARS-CoV-2 main protease M Bhat ZA; Chitara D; Iqbal J; Sanjeev BS; Madhumalar A J Biomol Struct Dyn; 2022 Sep; 40(14):6603-6618. PubMed ID: 33645457 [TBL] [Abstract][Full Text] [Related]
4. Discovery of M Protease Inhibitors Encoded by SARS-CoV-2. Hung HC; Ke YY; Huang SY; Huang PN; Kung YA; Chang TY; Yen KJ; Peng TT; Chang SE; Huang CT; Tsai YR; Wu SH; Lee SJ; Lin JH; Liu BS; Sung WC; Shih SR; Chen CT; Hsu JT Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32669265 [TBL] [Abstract][Full Text] [Related]
5. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166 [TBL] [Abstract][Full Text] [Related]
6. The Discovery of Small Allosteric and Active Site Inhibitors of the SARS-CoV-2 Main Protease via Structure-Based Virtual Screening and Biological Evaluation. Mahgoub RE; Mohamed FE; Alzyoud L; Ali BR; Ferreira J; Rabeh WM; AlNeyadi SS; Atatreh N; Ghattas MA Molecules; 2022 Oct; 27(19):. PubMed ID: 36235244 [TBL] [Abstract][Full Text] [Related]
7. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M Mohan A; Rendine N; Mohammed MKS; Jeeva A; Ji HF; Talluri VR Mol Divers; 2022 Jun; 26(3):1645-1661. PubMed ID: 34480682 [TBL] [Abstract][Full Text] [Related]
8. Easy access to α-ketoamides as SARS-CoV-2 and MERS M Pelliccia S; Cerchia C; Esposito F; Cannalire R; Corona A; Costanzi E; Kuzikov M; Gribbon P; Zaliani A; Brindisi M; Storici P; Tramontano E; Summa V Eur J Med Chem; 2022 Dec; 244():114853. PubMed ID: 36332546 [TBL] [Abstract][Full Text] [Related]
9. In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection. Martorana A; Gentile C; Lauria A Viruses; 2020 Jul; 12(8):. PubMed ID: 32722574 [TBL] [Abstract][Full Text] [Related]
10. Elucidation of Binding Features and Dissociation Pathways of Inhibitors and Modulators in SARS-CoV-2 Main Protease by Multiple Molecular Dynamics Simulations. Xu L; Xie L; Zhang D; Xu X Molecules; 2022 Oct; 27(20):. PubMed ID: 36296416 [TBL] [Abstract][Full Text] [Related]
11. An Updated Review on SARS-CoV-2 Main Proteinase (M Sabbah DA; Hajjo R; Bardaweel SK; Zhong HA Curr Top Med Chem; 2021; 21(6):442-460. PubMed ID: 33292134 [TBL] [Abstract][Full Text] [Related]
12. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (M Hicks EG; Kandel SE; Lampe JN Bioorg Med Chem Lett; 2022 Jun; 66():128732. PubMed ID: 35427739 [TBL] [Abstract][Full Text] [Related]
13. Genetic Surveillance of SARS-CoV-2 M Lee JT; Yang Q; Gribenko A; Perrin BS; Zhu Y; Cardin R; Liberator PA; Anderson AS; Hao L mBio; 2022 Aug; 13(4):e0086922. PubMed ID: 35862764 [TBL] [Abstract][Full Text] [Related]
14. Molecular interactions and inhibition of the SARS-CoV-2 main protease by a thiadiazolidinone derivative. Andrzejczyk J; Jovic K; Brown LM; Pascetta VG; Varga K; Vashisth H Proteins; 2022 Nov; 90(11):1896-1907. PubMed ID: 35567429 [TBL] [Abstract][Full Text] [Related]
15. Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease. Batool F; Mughal EU; Zia K; Sadiq A; Naeem N; Javid A; Ul-Haq Z; Saeed M J Biomol Struct Dyn; 2022 May; 40(8):3777-3788. PubMed ID: 33251983 [TBL] [Abstract][Full Text] [Related]
16. Computational Identification of Possible Allosteric Sites and Modulators of the SARS-CoV-2 Main Protease. DasGupta D; Chan WKB; Carlson HA J Chem Inf Model; 2022 Feb; 62(3):618-626. PubMed ID: 35107014 [TBL] [Abstract][Full Text] [Related]
17. Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity. Liu C; Puopolo T; Li H; Cai A; Seeram NP; Ma H Molecules; 2022 Sep; 27(18):. PubMed ID: 36144858 [TBL] [Abstract][Full Text] [Related]
18. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A Molecules; 2020 May; 25(11):. PubMed ID: 32485894 [TBL] [Abstract][Full Text] [Related]
19. An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Sun Z; Wang L; Li X; Fan C; Xu J; Shi Z; Qiao H; Lan Z; Zhang X; Li L; Zhou X; Geng Y Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2120913119. PubMed ID: 35324337 [TBL] [Abstract][Full Text] [Related]
20. Anticoagulants as Potential SARS-CoV-2 M Abo Elmaaty A; Eldehna WM; Khattab M; Kutkat O; Alnajjar R; El-Taweel AN; Al-Rashood ST; Abourehab MAS; Binjubair FA; Saleh MA; Belal A; Al-Karmalawy AA Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]