These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35941927)
21. Evaluation of the effects of chlorhexidine and several flavonoids as antiviral purposes on SARS-CoV-2 main protease: molecular docking, molecular dynamics simulation studies. Tatar G; Salmanli M; Dogru Y; Tuzuner T J Biomol Struct Dyn; 2022 Oct; 40(17):7656-7665. PubMed ID: 33749547 [TBL] [Abstract][Full Text] [Related]
22. Progress of SARS-CoV-2 Main protease peptide-like inhibitors. Liu X; Ren X; Hua M; Liu F; Ren X; Sui C; Li Q; Luo F; Jiang Z; Xia Z; Chen J; Yang B Chem Biol Drug Des; 2024 Jan; 103(1):e14425. PubMed ID: 38082476 [TBL] [Abstract][Full Text] [Related]
23. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Yuce M; Cicek E; Inan T; Dag AB; Kurkcuoglu O; Sungur FA Proteins; 2021 Nov; 89(11):1425-1441. PubMed ID: 34169568 [TBL] [Abstract][Full Text] [Related]
24. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y; Singh H; Patel CN J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274 [TBL] [Abstract][Full Text] [Related]
25. Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases. Tekpinar M; Yildirim A J Biomol Struct Dyn; 2022 Sep; 40(14):6243-6254. PubMed ID: 33525993 [TBL] [Abstract][Full Text] [Related]
26. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Fernandes HS; Sousa SF; Cerqueira NMFSA Mol Divers; 2022 Jun; 26(3):1373-1381. PubMed ID: 34169450 [TBL] [Abstract][Full Text] [Related]
27. Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an Awoonor-Williams E Phys Chem Chem Phys; 2022 Oct; 24(38):23391-23401. PubMed ID: 36128834 [TBL] [Abstract][Full Text] [Related]
28. An allosteric mechanism for potent inhibition of SARS-CoV-2 main proteinase. Zhang Y; Guo J; Liu Y; Qu Y; Li YQ; Mu Y; Li W Int J Biol Macromol; 2024 Apr; 265(Pt 1):130644. PubMed ID: 38462102 [TBL] [Abstract][Full Text] [Related]
29. In-silico pharmacophoric and molecular docking-based drug discovery against the Main Protease (Mpro) of SARS-CoV-2, a causative agent COVID-19. Haider Z; Subhani MM; Farooq MA; Ishaq M; Khalid M; Akram MN; Khan RSA; Niazi AK Pak J Pharm Sci; 2020 Nov; 33(6):2697-2705. PubMed ID: 33867348 [TBL] [Abstract][Full Text] [Related]
30. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Kandeel M; Al-Nazawi M Life Sci; 2020 Jun; 251():117627. PubMed ID: 32251634 [TBL] [Abstract][Full Text] [Related]
31. The Discovery of Novel Small Oxindole-Based Inhibitors Targeting the SARS-CoV-2 Main Protease (M Alzyoud L; Mahgoub RE; Mohamed FE; Ali BR; Ferreira J; Rabeh WM; Atatreh N; Ghattas MA Chem Biodivers; 2023 Nov; 20(11):e202301176. PubMed ID: 37861105 [TBL] [Abstract][Full Text] [Related]
32. In silico evaluation of Philippine Natural Products against SARS-CoV-2 Main Protease. Cheng AJT; Macalino SJY; Billones JB; Balolong MP; Murao LAE; Carrillo MCO J Mol Model; 2022 Oct; 28(11):345. PubMed ID: 36205801 [TBL] [Abstract][Full Text] [Related]
34. Luminescent Assay for the Screening of SARS-CoV-2 M Sondag D; Merx J; Rossing E; Boltje TJ; Löwik DWPM; Nelissen FHT; van Geffen M; van 't Veer C; van Heerde WL; Rutjes FPJT Chembiochem; 2022 Aug; 23(15):e202200190. PubMed ID: 35649961 [TBL] [Abstract][Full Text] [Related]
35. Conventional Understanding of SARS-CoV-2 M Zhou K; Chen D Chembiochem; 2023 Nov; 24(22):e202300301. PubMed ID: 37577869 [TBL] [Abstract][Full Text] [Related]
36. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Li M; Liu X; Zhang S; Liang S; Zhang Q; Chen J Phys Chem Chem Phys; 2022 Sep; 24(36):22129-22143. PubMed ID: 36082845 [TBL] [Abstract][Full Text] [Related]
37. From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Göhl M; Zhang L; El Kilani H; Sun X; Zhang K; Brönstrup M; Hilgenfeld R Molecules; 2022 Jul; 27(13):. PubMed ID: 35807537 [TBL] [Abstract][Full Text] [Related]
38. The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Silvestrini L; Belhaj N; Comez L; Gerelli Y; Lauria A; Libera V; Mariani P; Marzullo P; Ortore MG; Palumbo Piccionello A; Petrillo C; Savini L; Paciaroni A; Spinozzi F Sci Rep; 2021 Apr; 11(1):9283. PubMed ID: 33927258 [TBL] [Abstract][Full Text] [Related]
39. A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease. Mandour YM; Zlotos DP; Alaraby Salem M J Biomol Struct Dyn; 2022 Mar; 40(5):2327-2338. PubMed ID: 33094680 [TBL] [Abstract][Full Text] [Related]
40. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach. Bhowmick S; Saha A; Osman SM; Alasmary FA; Almutairi TM; Islam MA Mol Divers; 2021 Aug; 25(3):1979-1997. PubMed ID: 33844135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]