These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35942339)

  • 1. Experimental and computational workflow for the analysis of tRNA pools from eukaryotic cells by mim-tRNAseq.
    Behrens A; Nedialkova DD
    STAR Protoc; 2022 Sep; 3(3):101579. PubMed ID: 35942339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq.
    Behrens A; Rodschinka G; Nedialkova DD
    Mol Cell; 2021 Apr; 81(8):1802-1815.e7. PubMed ID: 33581077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALL-tRNAseq enables robust tRNA profiling in tissue samples.
    Scheepbouwer C; Aparicio-Puerta E; Gomez-Martin C; Verschueren H; van Eijndhoven M; Wedekind LE; Giannoukakos S; Hijmering N; Gasparotto L; van der Galien HT; van Rijn RS; Aronica E; Kibbelaar R; Heine VM; Wesseling P; Noske DP; Vandertop WP; de Jong D; Pegtel DM; Hackenberg M; Wurdinger T; Gerber A; Koppers-Lalic D
    Genes Dev; 2023 Mar; 37(5-6):243-257. PubMed ID: 36810209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP.
    Gogakos T; Brown M; Garzia A; Meyer C; Hafner M; Tuschl T
    Cell Rep; 2017 Aug; 20(6):1463-1475. PubMed ID: 28793268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA-Independent way to regulate translation elongation rate in eukaryotic cells.
    Negrutskii B; Vlasenko D; Mirande M; Futernyk P; El'skaya A
    IUBMB Life; 2018 Mar; 70(3):192-196. PubMed ID: 29417736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized protocol for tRNA identification in the ribosomal complexes from human cell lines.
    Udagawa T; Seki M; Inada T
    STAR Protoc; 2021 Sep; 2(3):100615. PubMed ID: 34189478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational workflow for integrative analyses of DNA replication timing, epigenomic, and transcriptomic data.
    Ji F; Van Rechem C; Whetstine JR; Sadreyev RI
    STAR Protoc; 2022 Dec; 3(4):101827. PubMed ID: 36386876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ambiguous polyuridylic acid translation by transport RNA from various eukaryotic substances].
    Soldatkin AP; Zheltovskaia NI; Obcharenko GV; El'skaia AV
    Ukr Biokhim Zh (1978); 1983; 55(6):603-7. PubMed ID: 6559001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational engineering enables co-crystallization and structural determination of the HIV-1 matrix-tRNA complex.
    Bou-Nader C; Zhang J
    STAR Protoc; 2022 Mar; 3(1):101056. PubMed ID: 35005638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational workflow for functional characterization of COVID-19 through secondary data analysis.
    Ghandikota S; Sharma M; Jegga AG
    STAR Protoc; 2021 Dec; 2(4):100873. PubMed ID: 34746856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of DNA oligo pools for
    Uzonyi A; Nir R; Schwartz S
    STAR Protoc; 2022 Mar; 3(1):101103. PubMed ID: 35462793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes.
    Blewett NH; Maraia RJ
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):361-372. PubMed ID: 29397330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Termination of prokaryotic and eukaryotic translation].
    Kutner J
    Postepy Biochem; 2007; 53(4):420-30. PubMed ID: 19024906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of germline-driven ancestry-associated gene expression in cancers.
    Chambwe N; Sayaman RW; Hu D; Huntsman S; ; Kemal A; Caesar-Johnson S; Zenklusen JC; Ziv E; Beroukhim R; Cherniack AD
    STAR Protoc; 2022 Sep; 3(3):101586. PubMed ID: 35942349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq).
    Finet O; Yague-Sanz C; Hermand D
    STAR Protoc; 2022 Jun; 3(2):101369. PubMed ID: 35573476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.
    Susorov D; Zakharov N; Shuvalova E; Ivanov A; Egorova T; Shuvalov A; Shatsky IN; Alkalaeva E
    J Biol Chem; 2018 Apr; 293(14):5220-5229. PubMed ID: 29453282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surveillance and cleavage of eukaryotic tRNAs.
    Megel C; Morelle G; Lalande S; DuchĂȘne AM; Small I; MarĂ©chal-Drouard L
    Int J Mol Sci; 2015 Jan; 16(1):1873-93. PubMed ID: 25599528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery.
    Van Leuven JT; Mao M; Xing DD; Bennett GM; McCutcheon JP
    mBio; 2019 Jun; 10(3):. PubMed ID: 31213566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization and expression of essential transcription translation component genes in the extremely thermophilic eubacterium Thermotoga maritima.
    Liao D; Dennis PP
    J Biol Chem; 1992 Nov; 267(32):22787-97. PubMed ID: 1429627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.