BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35942344)

  • 1. Protocol to estimate cell type proportions from bulk RNA-seq using DAISM-DNN
    Lin Y; Wu S; Xiao X; Zhao J; Wang M; Li H; Wang K; Zhang M; Zheng F; Yang W; Zhang L; Han J; Yu R
    STAR Protoc; 2022 Sep; 3(3):101587. PubMed ID: 35942344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DAISM-DNN
    Lin Y; Li H; Xiao X; Zhang L; Wang K; Zhao J; Wang M; Zheng F; Zhang M; Yang W; Han J; Yu R
    Patterns (N Y); 2022 Mar; 3(3):100440. PubMed ID: 35510186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized workflow for human PBMC multiomic immunosurveillance studies.
    Genge PC; Roll CR; Heubeck AT; Swanson E; Kondza N; Lord C; Weiss M; Hernandez V; Phalen C; Thomson Z; Torgerson TR; Skene PJ; Bumol TF; Reading J
    STAR Protoc; 2021 Dec; 2(4):100900. PubMed ID: 34806044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing single-cell RNA-seq datasets using SingCellaR.
    Wang G; Wen WX; Mead AJ; Roy A; Psaila B; Thongjuea S
    STAR Protoc; 2022 Jun; 3(2):101266. PubMed ID: 35391938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational approach to generate highly conserved gene co-expression networks with RNA-seq data.
    Arshad Z; McDonald JF
    STAR Protoc; 2022 Jun; 3(2):101432. PubMed ID: 35677606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol to extract cell-type-specific signatures from differentially expressed genes in bulk-tissue RNA-seq.
    Marquez-Galera A; de la Prida LM; Lopez-Atalaya JP
    STAR Protoc; 2022 Mar; 3(1):101121. PubMed ID: 35118429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed single-cell RNA-sequencing of mouse thymic and splenic samples.
    Pankaew S; Grosjean C; Quessada J; Loosveld M; Potier D; Payet-Bornet D; Nozais M
    STAR Protoc; 2021 Dec; 3(1):101041. PubMed ID: 36475567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol to isolate mature thymic T cell subsets using fluorescence-activated cell sorting for assessing gene expression by RNA-seq and transcription factor binding across the genome by CUT&RUN.
    Theofilatos D; Äijö T; Tsagaratou A
    STAR Protoc; 2022 Dec; 3(4):101839. PubMed ID: 36386867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-embryo RNA sequencing for continuous and sex-specific gene expression analysis on Drosophila.
    Pérez-Mojica JE; Enders L; Lau KH; Lempradl A
    STAR Protoc; 2023 Sep; 4(3):102535. PubMed ID: 37682716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol to dissociate, process, and analyze the human lung tissue using single-cell RNA-seq.
    Quintanal-Villalonga Á; Chan JM; Masilionis I; Gao VR; Xie Y; Allaj V; Chow A; Poirier JT; Pe'er D; Rudin CM; Mazutis L
    STAR Protoc; 2022 Dec; 3(4):101776. PubMed ID: 36313536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for bulk RNA sequencing of enriched human neutrophils from whole blood and estimation of sample purity.
    Gonye ALK; LaSalle TJ; Freeman SS; Reyes M; Hacohen N; Villani AC; Sade-Feldman M
    STAR Protoc; 2023 Mar; 4(1):102125. PubMed ID: 36853705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA sequencing and analysis of rodent blood stage Plasmodium.
    Jentho E; Sousa AGG; Ramos S; Ademolue TW; Sobral J; Costa J; Brito D; Manteiro M; Leite RB; Lilue J; Soares MP
    STAR Protoc; 2023 Sep; 4(3):102491. PubMed ID: 37581982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of human cutaneous immune cells for single-cell RNA sequencing.
    Hailer AA; Wu D; El Kurdi A; Yuan M; Cho RJ; Cheng JB
    STAR Protoc; 2023 Apr; 4(2):102239. PubMed ID: 37120815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for RNA-seq library preparation starting from a rare muscle stem cell population or a limited number of mouse embryonic stem cells.
    Dell'Orso S; Juan AH; Moiseeva V; García-Prat L; Muñoz-Cánoves P; Sartorelli V
    STAR Protoc; 2021 Jun; 2(2):100451. PubMed ID: 33937872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for isolation and functional validation of label-retaining quiescent colorectal cancer stem cells from patient-derived organoids for RNA-seq.
    Regan JL
    STAR Protoc; 2022 Mar; 3(1):101225. PubMed ID: 35300001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach.
    Mastropietro A; Pasculli G; Bajorath J
    STAR Protoc; 2022 Dec; 3(4):101887. PubMed ID: 36595907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for generation of a time-resolved cellular interactome during tissue remodeling in adult mice.
    Groppa E; Tung LW; Mattevi S; Ritso M; Rossi FMV; Martini P
    STAR Protoc; 2023 Dec; 4(4):102638. PubMed ID: 37831606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated protocol for exitron and exitron-derived neoantigen identification using human RNA-seq data with ScanExitron and ScanNeo.
    Wang TY; Yang R
    STAR Protoc; 2021 Sep; 2(3):100788. PubMed ID: 34522901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for using TRIBE to study RNA-protein interactions and nuclear organization in mammalian cells.
    Biswas J; Rosbash M; Singer RH; Rahman R
    STAR Protoc; 2021 Sep; 2(3):100634. PubMed ID: 34258595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.