These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35942990)
1. Fabrication of biogenic silver nanoparticles from Ficus religiosa bark extract and their application for chromium removal. Riaz A; Nosheen S; Mughal TA Microsc Res Tech; 2022 Nov; 85(11):3618-3622. PubMed ID: 35942990 [TBL] [Abstract][Full Text] [Related]
2. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Kanjikar AP; Hugar AL; Londonkar RL Drug Dev Ind Pharm; 2018 Mar; 44(3):377-384. PubMed ID: 29098876 [TBL] [Abstract][Full Text] [Related]
3. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Kumar D; Kumar G; Agrawal V Parasitol Res; 2018 Feb; 117(2):377-389. PubMed ID: 29250727 [TBL] [Abstract][Full Text] [Related]
4. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Antony JJ; Sithika MA; Joseph TA; Suriyakalaa U; Sankarganesh A; Siva D; Kalaiselvi S; Achiraman S Colloids Surf B Biointerfaces; 2013 Aug; 108():185-90. PubMed ID: 23537836 [TBL] [Abstract][Full Text] [Related]
5. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Arunachalam K; Shanmuganathan B; Sreeja PS; Parimelazhagan T Environ Sci Pollut Res Int; 2015 Nov; 22(22):18066-75. PubMed ID: 26174983 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and antibacterial potential of Loranthus pulverulentus conjugated silver nanoparticles. Subhani MA; Irshad M; Nazir A; Hafeez M; Ali S Microsc Res Tech; 2022 Nov; 85(11):3530-3540. PubMed ID: 35861158 [TBL] [Abstract][Full Text] [Related]
7. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Sankar R; Maheswari R; Karthik S; Shivashangari KS; Ravikumar V Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():234-9. PubMed ID: 25280701 [TBL] [Abstract][Full Text] [Related]
8. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Velayutham K; Rahuman AA; Rajakumar G; Roopan SM; Elango G; Kamaraj C; Marimuthu S; Santhoshkumar T; Iyappan M; Siva C Asian Pac J Trop Med; 2013 Feb; 6(2):95-101. PubMed ID: 23339909 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Swamy MK; Akhtar MS; Mohanty SK; Sinniah UR Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():939-44. PubMed ID: 26186612 [TBL] [Abstract][Full Text] [Related]
11. Eco-friendly green synthesis of clove buds extract functionalized silver nanoparticles and evaluation of antibacterial and antidiatom activity. Lakhan MN; Chen R; Shar AH; Chand K; Shah AH; Ahmed M; Ali I; Ahmed R; Liu J; Takahashi K; Wang J J Microbiol Methods; 2020 Jun; 173():105934. PubMed ID: 32325159 [TBL] [Abstract][Full Text] [Related]
12. Sunlight induced biosynthesis of silver nanoparticle from the bark extract of Bharali P; Das S; Bhandari N; Das AK; Kalta MC IET Nanobiotechnol; 2019 Feb; 13(1):18-22. PubMed ID: 30964032 [TBL] [Abstract][Full Text] [Related]
13. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Singh H; Du J; Singh P; Yi TH Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1163-1170. PubMed ID: 28784039 [TBL] [Abstract][Full Text] [Related]
14. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Edison TN; Lee YR; Sethuraman MG Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():122-9. PubMed ID: 26967513 [TBL] [Abstract][Full Text] [Related]
15. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of Metal Nanoparticles from Leaves of Sati SC; Kour G; Bartwal AS; Sati MD Biochemistry; 2020 Aug; 59(33):3019-3025. PubMed ID: 32794692 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterization, antimicrobial and antimetastatic activity of silver nanoparticles synthesized from Ficus ingens leaf. Kavaz D; Umar H; Shehu S Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1193-S1203. PubMed ID: 30688106 [TBL] [Abstract][Full Text] [Related]
19. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621 [TBL] [Abstract][Full Text] [Related]
20. Green synthesis of silver nanoparticles (AgNPs) by Pistacia terebinthus extract: Comprehensive evaluation of antimicrobial, antioxidant and anticancer effects. Naghmachi M; Raissi A; Baziyar P; Homayoonfar F; Amirmahani F; Danaei M Biochem Biophys Res Commun; 2022 Jun; 608():163-169. PubMed ID: 35430422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]