These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 35943287)
1. FAP-α-Instructed Coumarin Excimer Formation for High Contrast Fluorescence Imaging of Tumor. Gao G; Sun X; Liu X; Tang R; Wang M; Zhan W; Zheng J; Liang G Nano Lett; 2022 Aug; 22(16):6782-6786. PubMed ID: 35943287 [TBL] [Abstract][Full Text] [Related]
2. An Acidity-Initiated Self-Assembly/Disassembly Nanoprobe to Switch on Fluorescence for Tumor-Targeted Near-Infrared Imaging. Luo R; Ou C; Li X; Wang Y; Du W; Liang G; Gong C Nano Lett; 2022 Jan; 22(1):151-156. PubMed ID: 34958593 [TBL] [Abstract][Full Text] [Related]
3. Carboxylesterase-Cleavable Biotinylated Nanoparticle for Tumor-Dual Targeted Imaging. Chen P; Kuang W; Zheng Z; Yang S; Liu Y; Su L; Zhao K; Liang G Theranostics; 2019; 9(24):7359-7369. PubMed ID: 31695773 [TBL] [Abstract][Full Text] [Related]
4. A Self-Evaluating Photothermal Therapeutic Nanoparticle. Wang Y; Du W; Zhang T; Zhu Y; Ni Y; Wang C; Sierra Raya FM; Zou L; Wang L; Liang G ACS Nano; 2020 Aug; 14(8):9585-9593. PubMed ID: 32806081 [TBL] [Abstract][Full Text] [Related]
5. ROS Turn Nanoparticle Fluorescence on for Imaging Staphylococcus aureus Infection In Vivo. Xu L; Zhan W; Deng Y; Liu X; Gao G; Sun X; Liang G Adv Healthc Mater; 2022 Jul; 11(14):e2200453. PubMed ID: 35521978 [TBL] [Abstract][Full Text] [Related]
6. Dual Aggregations of a Near-Infrared Aggregation-Induced Emission Luminogen for Enhanced Imaging of Alzheimer's Disease. Xu L; Gao H; Zhan W; Deng Y; Liu X; Jiang Q; Sun X; Xu JJ; Liang G J Am Chem Soc; 2023 Dec; 145(50):27748-27756. PubMed ID: 38052046 [TBL] [Abstract][Full Text] [Related]
7. Legumain-Specific Near-Infrared Fluorescence "Turn On" for Tumor-Targeted Imaging. Zhao Y; Hai Z; Wang H; Su L; Liang G Anal Chem; 2018 Aug; 90(15):8732-8735. PubMed ID: 30027744 [TBL] [Abstract][Full Text] [Related]
8. Granzyme B Turns Nanoparticle Fluorescence "On" for Imaging Cytotoxic T Lymphocyte Activity in Vivo. Xu L; Liu N; Zhan W; Deng Y; Chen Z; Liu X; Gao G; Chen Q; Liu Z; Liang G ACS Nano; 2022 Nov; 16(11):19328-19334. PubMed ID: 36282211 [TBL] [Abstract][Full Text] [Related]
9. Caspase-3-Triggered Intracellular Gadolinium Nanoparticle Formation for T Xu HD; Cheng X; Sun X; Chen P; Zhan W; Liu X; Wang X; Hu B; Liang G Nano Lett; 2023 Jul; 23(13):6178-6183. PubMed ID: 37363812 [TBL] [Abstract][Full Text] [Related]
10. Enzyme-Instructed Self-Assembly Enabled Monomer-Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activity-based Bioimaging. Zhong Y; Zhan J; Xu G; Chen Y; Qin Q; Liao X; Ma S; Yang Z; Cai Y Angew Chem Int Ed Engl; 2021 Apr; 60(15):8121-8129. PubMed ID: 33410570 [TBL] [Abstract][Full Text] [Related]
11. Intracellular Proteolytic Disassembly of Self-Quenched Near-Infrared Nanoparticles Turning Fluorescence on for Tumor-Targeted Imaging. Jiang J; Zhao Z; Hai Z; Wang H; Liang G Anal Chem; 2017 Sep; 89(18):9625-9628. PubMed ID: 28874046 [TBL] [Abstract][Full Text] [Related]
12. Dual aggregation-induced emission for enhanced fluorescence sensing of furin activity in vitro and in living cells. Liu X; Liang G Chem Commun (Camb); 2017 Jan; 53(6):1037-1040. PubMed ID: 28000813 [TBL] [Abstract][Full Text] [Related]
13. Tandem Targeting and Dual Aggregation of an AIEgen for Enhanced Near-Infrared Fluorescence Imaging of Tumors. Deng Y; Xu L; Liu X; Jiang Q; Sun X; Zhan W; Liang G J Am Chem Soc; 2024 Sep; 146(37):25462-25466. PubMed ID: 39240652 [TBL] [Abstract][Full Text] [Related]
14. Smart Dual Quenching Strategy Enhances the Detection Sensitivity of Intracellular Furin. Hai Z; Wu J; Saimi D; Ni Y; Zhou R; Liang G Anal Chem; 2018 Feb; 90(3):1520-1524. PubMed ID: 29336142 [TBL] [Abstract][Full Text] [Related]
15. Intracellular Nitroreductase-Triggered "On" and "Enhanced" Photoacoustic Signals for Sensitive Imaging of Tumor Hypoxia. Sun X; Xu L; Xu HD; Xie L; Wang R; Yang Z; Zhan W; Shen S; Liang G Adv Healthc Mater; 2024 Apr; 13(10):e2303472. PubMed ID: 37985951 [TBL] [Abstract][Full Text] [Related]
16. Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Li J; Chen K; Liu H; Cheng K; Yang M; Zhang J; Cheng JD; Zhang Y; Cheng Z Bioconjug Chem; 2012 Aug; 23(8):1704-11. PubMed ID: 22812530 [TBL] [Abstract][Full Text] [Related]
17. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine. He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515 [TBL] [Abstract][Full Text] [Related]
18. Furin-Guided Intracellular Wang H; Chen P; Wu H; Zou P; Wu J; Liu Y; Liang G Anal Chem; 2019 Dec; 91(23):14842-14845. PubMed ID: 31718142 [TBL] [Abstract][Full Text] [Related]
19. γ-Glutamyltranspeptidase-Triggered Intracellular Gadolinium Nanoparticle Formation Enhances the T Hai Z; Ni Y; Saimi D; Yang H; Tong H; Zhong K; Liang G Nano Lett; 2019 Apr; 19(4):2428-2433. PubMed ID: 30856326 [TBL] [Abstract][Full Text] [Related]
20. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish. He L; Yang X; Xu K; Lin W Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]