These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
981 related articles for article (PubMed ID: 35943767)
1. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
2. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure. Chen Z; Li T; Guo S; Zeng D; Wang K Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747 [TBL] [Abstract][Full Text] [Related]
5. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related]
6. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
7. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database. Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649 [TBL] [Abstract][Full Text] [Related]
8. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
9. Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis. Liu C; Liu X; Mao Z; Hu P; Li X; Hu J; Hong Q; Geng X; Chi K; Zhou F; Cai G; Chen X; Sun X Med Sci Sports Exerc; 2021 Sep; 53(9):1826-1834. PubMed ID: 33787533 [TBL] [Abstract][Full Text] [Related]
10. Predicting sepsis in-hospital mortality with machine learning: a multi-center study using clinical and inflammatory biomarkers. Zhang G; Shao F; Yuan W; Wu J; Qi X; Gao J; Shao R; Tang Z; Wang T Eur J Med Res; 2024 Mar; 29(1):156. PubMed ID: 38448999 [TBL] [Abstract][Full Text] [Related]
11. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
12. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning. Yang B; Zhu Y; Lu X; Shen C Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312 [TBL] [Abstract][Full Text] [Related]
13. Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. Pan P; Li Y; Xiao Y; Han B; Su L; Su M; Li Y; Zhang S; Jiang D; Chen X; Zhou F; Ma L; Bao P; Xie L J Med Internet Res; 2020 Nov; 22(11):e23128. PubMed ID: 33035175 [TBL] [Abstract][Full Text] [Related]
14. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
15. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
16. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning. Zhang L; Zhou X; Cao J PeerJ; 2024; 12():e16867. PubMed ID: 38313005 [TBL] [Abstract][Full Text] [Related]
17. Prediction of 30-day mortality in heart failure patients with hypoxic hepatitis: Development and external validation of an interpretable machine learning model. Sun R; Wang X; Jiang H; Yan Y; Dong Y; Yan W; Luo X; Miu H; Qi L; Huang Z Front Cardiovasc Med; 2022; 9():1035675. PubMed ID: 36386374 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of an Interpretable Machine Learning Model for Early Prognosis Prediction in ICU Patients with Malignant Tumors and Hyperkalemia. Bu ZJ; Jiang N; Li KC; Lu ZL; Zhang N; Yan SS; Chen ZL; Hao YH; Zhang YH; Xu RB; Chi HW; Chen ZY; Liu JP; Wang D; Xu F; Liu ZL Medicine (Baltimore); 2024 Jul; 103(30):e38747. PubMed ID: 39058887 [TBL] [Abstract][Full Text] [Related]
19. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database. Guo J; Cheng H; Wang Z; Qiao M; Li J; Lyu J Front Neurol; 2023; 14():1290117. PubMed ID: 38162445 [TBL] [Abstract][Full Text] [Related]
20. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]