These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35944059)

  • 1. Frequency-Following Response to Steady-State Vowel in Quiet and Background Noise Among Marching Band Participants With Normal Hearing.
    Suresh CH; Krishnan A
    Am J Audiol; 2022 Sep; 31(3):719-736. PubMed ID: 35944059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Search for Electrophysiological Indices of Hidden Hearing Loss in Humans: Click Auditory Brainstem Response Across Sound Levels and in Background Noise.
    Suresh CH; Krishnan A
    Ear Hear; 2021; 42(1):53-67. PubMed ID: 32675590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.
    Laroche M; Dajani HR; Prévost F; Marcoux AM
    Ear Hear; 2013; 34(1):63-74. PubMed ID: 22814487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Phase-Locking Deficits on Speech Recognition in Older Adults With Presbycusis.
    Hao W; Wang Q; Li L; Qiao Y; Gao Z; Ni D; Shang Y
    Front Aging Neurosci; 2018; 10():397. PubMed ID: 30574084
    [No Abstract]   [Full Text] [Related]  

  • 8. Auditory Brainstem Representation of the Voice Pitch Contours in the Resolved and Unresolved Components of Mandarin Tones.
    Peng F; McKay CM; Mao D; Hou W; Innes-Brown H
    Front Neurosci; 2018; 12():820. PubMed ID: 30505262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Frequency Following Responses to Vocoded Speech: Amplitude Modulation Versus Amplitude Plus Frequency Modulation.
    Suresh CH; Krishnan A; Luo X
    Ear Hear; 2020; 41(2):300-311. PubMed ID: 31246660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating potential interactions between envelope following responses elicited simultaneously by different vowel formants.
    Easwar V; Scollie S; Purcell D
    Hear Res; 2019 Sep; 380():35-45. PubMed ID: 31176869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human frequency following responses to iterated rippled noise with positive and negative gain: Differential sensitivity to waveform envelope and temporal fine-structure.
    Ananthakrishnan S; Krishnan A
    Hear Res; 2018 Sep; 367():113-123. PubMed ID: 30096491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying effect of noise on sound onset and acoustic change evoked auditory cortical N1 responses evoked by a vowel-vowel stimulus.
    Yaralı M
    Int J Psychophysiol; 2020 Jun; 152():36-43. PubMed ID: 32302643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss.
    Mai G; Howell P
    Hear Res; 2023 Jan; 427():108647. PubMed ID: 36436293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of envelope following responses to vowel polarity.
    Easwar V; Beamish L; Aiken S; Choi JM; Scollie S; Purcell D
    Hear Res; 2015 Feb; 320():38-50. PubMed ID: 25500177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between speech-evoked neural responses and perception of speech in noise in older adults.
    Mai G; Tuomainen J; Howell P
    J Acoust Soc Am; 2018 Mar; 143(3):1333. PubMed ID: 29604686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery.
    Henry KS; Heinz MG
    Hear Res; 2013 Sep; 303():39-47. PubMed ID: 23376018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human frequency-following responses: representation of steady-state synthetic vowels.
    Krishnan A
    Hear Res; 2002 Apr; 166(1-2):192-201. PubMed ID: 12062771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Informational Masking Effects on Neural Encoding of Stimulus Onset and Acoustic Change.
    Niemczak CE; Vander Werff KR
    Ear Hear; 2019; 40(1):156-167. PubMed ID: 29782442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.
    White-Schwoch T; Davies EC; Thompson EC; Woodruff Carr K; Nicol T; Bradlow AR; Kraus N
    Hear Res; 2015 Oct; 328():34-47. PubMed ID: 26113025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.