These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35944146)

  • 21. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosting zinc ion energy storage capability of inert MnO cathode by defect engineering.
    Yu P; Zhou J; Zheng M; Li M; Hu H; Xiao Y; Liu Y; Liang Y
    J Colloid Interface Sci; 2021 Jul; 594():540-549. PubMed ID: 33774410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries.
    Qiu N; Chen H; Yang Z; Zhu Y; Liu W; Wang Y
    Chem Commun (Camb); 2020 Apr; 56(26):3785-3788. PubMed ID: 32129323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene Scroll-Coated α-MnO
    Wu B; Zhang G; Yan M; Xiong T; He P; He L; Xu X; Mai L
    Small; 2018 Mar; 14(13):e1703850. PubMed ID: 29392874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inducing Mn defects within MnTiO
    Jiang Y; Jia M; Wan Y; Guo M; Zhang Z; Duan C; Yan X; Zhang X
    J Colloid Interface Sci; 2024 Jun; 664():588-595. PubMed ID: 38490034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure Design of Long-Life Spinel-Oxide Cathode Materials for Magnesium Rechargeable Batteries.
    Shimokawa K; Atsumi T; Okamoto NL; Kawaguchi T; Imashuku S; Wagatsuma K; Nakayama M; Kanamura K; Ichitsubo T
    Adv Mater; 2021 Feb; 33(7):e2007539. PubMed ID: 33458915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrolyte Dynamics Engineering for Flexible Fiber-Shaped Aqueous Zinc-Ion Battery with Ultralong Stability.
    Lu Y; Zhang H; Liu H; Nie Z; Xu F; Zhao Y; Zhu J; Huang W
    Nano Lett; 2021 Nov; 21(22):9651-9660. PubMed ID: 34767374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expanded spinel Zn
    Wu TH; Huang CC; Cheng SL; Lin CC
    J Colloid Interface Sci; 2022 Jul; 617():274-283. PubMed ID: 35278865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries.
    Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bi Doping-Enhanced Reversible-Phase Transition of α-MnO
    Ma K; Li Q; Hong C; Yang G; Wang C
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55208-55217. PubMed ID: 34763420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultraporous, Ultrasmall MgMn
    Kobayashi H; Fukumi Y; Watanabe H; Iimura R; Nishimura N; Mandai T; Tominaga Y; Nakayama M; Ichitsubo T; Honma I; Imai H
    ACS Nano; 2023 Feb; 17(3):3135-3142. PubMed ID: 36669094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin VSe
    Wu Z; Lu C; Wang Y; Zhang L; Jiang L; Tian W; Cai C; Gu Q; Sun Z; Hu L
    Small; 2020 Sep; 16(35):e2000698. PubMed ID: 32776405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electropolymerization of a Carbonyl-Modified Dihydropyrazine Derivative for Aqueous Zinc Batteries with Ultrahigh Cycling Stability.
    Wang D; Bai Y; Zhou Z; Yao Q; Cao W; Ma Y; Wang C
    ACS Appl Mater Interfaces; 2024 May; 16(20):26121-26129. PubMed ID: 38728577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-step synthesis of MnO
    Li Z; Huang Y; Zhang J; Jin S; Zhang S; Zhou H
    Nanoscale; 2020 Feb; 12(6):4150-4158. PubMed ID: 32022061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V
    Qian Li ; Wei T; Ma K; Yang G; Wang C
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20888-20894. PubMed ID: 31117461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn
    Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y
    Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bi
    Xiong T; Wang Y; Yin B; Shi W; Lee WSV; Xue J
    Nanomicro Lett; 2019 Dec; 12(1):8. PubMed ID: 34138045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn
    Feng D; Gao TN; Zhang L; Guo B; Song S; Qiao ZA; Dai S
    Nanomicro Lett; 2019 Dec; 12(1):14. PubMed ID: 34138086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Transformation by Crystal Engineering Endows Aqueous Zinc-Ion Batteries with Ultra-long Cyclability.
    Wang K; Wang J; Chen P; Qin M; Yang C; Zhang W; Zhang Z; Zhen Y; Fu F; Xu B
    Small; 2023 Jul; 19(29):e2300585. PubMed ID: 37029580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.