BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35944462)

  • 21. Myeloid-derived suppressor cells and plasmacytoid dendritic cells are associated with oncogenesis of oral squamous cell carcinoma.
    Kouketsu A; Haruka S; Kuroda K; Hitoshi M; Kensuke Y; Tsuyoshi S; Takahashi T; Hiroyuki K
    J Oral Pathol Med; 2023 Jan; 52(1):9-19. PubMed ID: 36380437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic Deregulation of Protein Tyrosine Kinase 6 Promotes Carcinogenesis of Oral Squamous Cell Carcinoma.
    Hsieh YP; Chen KC; Chen MY; Huang LY; Su AY; Chiang WF; Huang WT; Huang TT
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter hypermethylation using 24-gene array in early head and neck cancer: better outcome in oral than in oropharyngeal cancer.
    Noorlag R; van Kempen PM; Moelans CB; de Jong R; Blok LE; Koole R; Grolman W; van Diest PJ; van Es RJ; Willems SM
    Epigenetics; 2014 Sep; 9(9):1220-7. PubMed ID: 25147921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prognostic value of the DNMTs mRNA expression and genetic polymorphisms on the clinical outcome in oral cancer patients.
    Supic G; Kozomara R; Zeljic K; Jovic N; Magic Z
    Clin Oral Investig; 2017 Jan; 21(1):173-182. PubMed ID: 26966018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Immune-Related Gene Signature to Identify the Tumor Microenvironment and Prognose Disease Among Patients With Oral Squamous Cell Carcinoma Patients Using ssGSEA: A Bioinformatics and Biological Validation Study.
    Chen Y; Feng Y; Yan F; Zhao Y; Zhao H; Guo Y
    Front Immunol; 2022; 13():922195. PubMed ID: 35935989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promoter Hypermethylation of LATS2 Gene in Oral Squamous Cell Carcinoma (OSCC) Among North Indian Population.
    Goel H; Singhal S; Mathur R; Syeda S; Gupta RK; Kumar A; Shrivastava A; Jha AK
    Asian Pac J Cancer Prev; 2020 May; 21(5):1283-1287. PubMed ID: 32458634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid droplets-related Perilipin-3: potential immune checkpoint and oncogene in oral squamous cell carcinoma.
    He Y; Liu L; Dong Y; Zhang X; Song Y; Jing Y; Ni Y; Wang Y; Wang Z; Ding L
    Cancer Immunol Immunother; 2024 Mar; 73(5):78. PubMed ID: 38554152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma.
    Shi Y; Xie T; Wang B; Wang R; Cai Y; Yuan B; Gleber-Netto FO; Tian X; Rodriguez-Rosario AE; Osman AA; Wang J; Pickering CR; Ren X; Sikora AG; Myers JN; Rangel R
    Commun Biol; 2022 Jul; 5(1):757. PubMed ID: 35902768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression.
    Fang Z; Zhao J; Xie W; Sun Q; Wang H; Qiao B
    Cancer Med; 2017 Dec; 6(12):2897-2908. PubMed ID: 29125238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma.
    Wu L; Deng WW; Huang CF; Bu LL; Yu GT; Mao L; Zhang WF; Liu B; Sun ZJ
    Cancer Immunol Immunother; 2017 May; 66(5):627-636. PubMed ID: 28236118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of E-cadherin down-regulation in oral cancer: CDH1 gene expression and epigenetic blockage.
    Pannone G; Santoro A; Feola A; Bufo P; Papagerakis P; Lo Muzio L; Staibano S; Ionna F; Longo F; Franco R; Aquino G; Contaldo M; De Maria S; Serpico R; De Rosa A; Rubini C; Papagerakis S; Giovane A; Tombolini V; Giordano A; Caraglia M; Di Domenico M
    Curr Cancer Drug Targets; 2014; 14(2):115-27. PubMed ID: 24274398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The CXCL11-CXCR3A axis influences the infiltration of CD274 and IDO1 in oral squamous cell carcinoma.
    Wang X; Zhang J; Zhou G
    J Oral Pathol Med; 2021 Apr; 50(4):362-370. PubMed ID: 33187013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.
    Park J; Kim HJ; Kim KR; Lee SK; Kim H; Park KK; Chung WY
    Oncotarget; 2017 Feb; 8(6):9079-9092. PubMed ID: 28030842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. STAT3 promotes differentiation of monocytes to MDSCs via CD39/CD73-adenosine signal pathway in oral squamous cell carcinoma.
    Cui H; Lan Z; Zou KL; Zhao YY; Yu GT
    Cancer Immunol Immunother; 2023 May; 72(5):1315-1326. PubMed ID: 36436019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local delivery of gambogic acid to improve anti-tumor immunity against oral squamous cell carcinoma.
    Chen X; Chen DR; Liu H; Yang L; Zhang Y; Bu LL; Sun ZJ; Cai L
    J Control Release; 2022 Nov; 351():381-393. PubMed ID: 36096364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD24 blockade promotes anti-tumor immunity in oral squamous cell carcinoma.
    Zou KL; Lan Z; Cui H; Zhao YY; Wang WM; Yu GT
    Oral Dis; 2024 Mar; 30(2):163-171. PubMed ID: 36056698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatics analysis of DNMT1 expression and its role in head and neck squamous cell carcinoma prognosis.
    Cui J; Zheng L; Zhang Y; Xue M
    Sci Rep; 2021 Jan; 11(1):2267. PubMed ID: 33500531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aberrantly hypermethylated tumor suppressor genes were identified in oral squamous cell carcinoma (OSCC).
    Kim SY; Han YK; Song JM; Lee CH; Kang K; Yi JM; Park HR
    Clin Epigenetics; 2019 Aug; 11(1):116. PubMed ID: 31405379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling.
    Lu M; Wang C; Chen W; Mao C; Wang J
    DNA Cell Biol; 2018 Apr; 37(4):381-388. PubMed ID: 29364705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MicroRNA-186 serves as a tumor suppressor in oral squamous cell carcinoma by negatively regulating the protein tyrosine phosphatase SHP2 expression.
    Cai Z; Hao XY; Liu FX
    Arch Oral Biol; 2018 May; 89():20-25. PubMed ID: 29407635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.