These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35944508)
1. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas. Elibol K; Downing C; Hobbs RG Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508 [TBL] [Abstract][Full Text] [Related]
2. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures. Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061 [TBL] [Abstract][Full Text] [Related]
3. Uncovering the Evolution of Low-Energy Plasmons in Nanopatterned Aluminum Plasmonics on Graphene. Elibol K; van Aken PA Nano Lett; 2022 Jul; 22(14):5825-5831. PubMed ID: 35820031 [TBL] [Abstract][Full Text] [Related]
5. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406 [TBL] [Abstract][Full Text] [Related]
6. Coaction effect of radiative and non-radiative damping on the lifetime of localized surface plasmon modes in individual gold nanorods. Qin Y; Xu Y; Ji B; Song X; Lin J J Chem Phys; 2023 Mar; 158(10):104701. PubMed ID: 36922139 [TBL] [Abstract][Full Text] [Related]
7. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy. Collette R; Garfinkel DA; Rack PD J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671 [TBL] [Abstract][Full Text] [Related]
8. Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures. Barrow SJ; Collins SM; Rossouw D; Funston AM; Botton GA; Midgley PA; Mulvaney P ACS Nano; 2016 Sep; 10(9):8552-63. PubMed ID: 27482623 [TBL] [Abstract][Full Text] [Related]
9. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates. Park GS; Min KS; Kwon H; Yoon S; Park S; Kwon JH; Lee S; Jo J; Kim M; Kim SK Adv Mater; 2021 Sep; 33(38):e2100653. PubMed ID: 34338357 [TBL] [Abstract][Full Text] [Related]
10. Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries. Haas B; Boland TM; Elsässer C; Singh AK; March K; Barthel J; Koch CT; Rez P Nano Lett; 2023 Jul; 23(13):5975-5980. PubMed ID: 37341711 [TBL] [Abstract][Full Text] [Related]
11. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614 [TBL] [Abstract][Full Text] [Related]
13. Spectrally tunable infrared plasmonic F,Sn:In Cho SH; Roccapriore KM; Dass CK; Ghosh S; Choi J; Noh J; Reimnitz LC; Heo S; Kim K; Xie K; Korgel BA; Li X; Hendrickson JR; Hachtel JA; Milliron DJ J Chem Phys; 2020 Jan; 152(1):014709. PubMed ID: 31914766 [TBL] [Abstract][Full Text] [Related]
14. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. Koh AL; Bao K; Khan I; Smith WE; Kothleitner G; Nordlander P; Maier SA; McComb DW ACS Nano; 2009 Oct; 3(10):3015-22. PubMed ID: 19772292 [TBL] [Abstract][Full Text] [Related]
15. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Koh AL; Fernández-Domínguez AI; McComb DW; Maier SA; Yang JK Nano Lett; 2011 Mar; 11(3):1323-30. PubMed ID: 21344928 [TBL] [Abstract][Full Text] [Related]
16. Strong Coupling between Dark Plasmon and Anapole Modes. Du K; Li P; Gao K; Wang H; Yang Z; Zhang W; Xiao F; Chua SJ; Mei T J Phys Chem Lett; 2019 Aug; 10(16):4699-4705. PubMed ID: 31364854 [TBL] [Abstract][Full Text] [Related]
17. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy. Barrow SJ; Rossouw D; Funston AM; Botton GA; Mulvaney P Nano Lett; 2014 Jul; 14(7):3799-808. PubMed ID: 24955651 [TBL] [Abstract][Full Text] [Related]
18. Comparative electron and photon excitation of localized surface plasmon resonance in lithographic gold arrays for enhanced Raman scattering. Zeng Y; Madsen SJ; Yankovich AB; Olsson E; Sinclair R Nanoscale; 2020 Dec; 12(46):23768-23779. PubMed ID: 33232431 [TBL] [Abstract][Full Text] [Related]
19. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography. Wu K; Rindzevicius T; Schmidt MS; Mogensen KB; Xiao S; Boisen A Opt Express; 2015 May; 23(10):12965-78. PubMed ID: 26074549 [TBL] [Abstract][Full Text] [Related]
20. Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating. Rodríguez-González B; Attouchi F; Cardinal MF; Myroshnychenko V; Stéphan O; García de Abajo FJ; Liz-Marzán LM; Kociak M Langmuir; 2012 Jun; 28(24):9063-70. PubMed ID: 22452636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]