These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35944640)
1. Crown dieback and mortality of urban trees linked to heatwaves during extreme drought. Marchin RM; Esperon-Rodriguez M; Tjoelker MG; Ellsworth DS Sci Total Environ; 2022 Dec; 850():157915. PubMed ID: 35944640 [TBL] [Abstract][Full Text] [Related]
2. Crown die-back of peri-urban forests after combined heatwave and drought was species-specific, size-dependent, and also related to tree neighbourhood characteristics. Lv H; Gangwisch M; Saha S Sci Total Environ; 2024 Feb; 913():169716. PubMed ID: 38159755 [TBL] [Abstract][Full Text] [Related]
3. Relating the climate envelopes of urban tree species to their drought and thermal tolerance. Hanley PA; Arndt SK; Livesley SJ; Szota C Sci Total Environ; 2021 Jan; 753():142012. PubMed ID: 33207433 [TBL] [Abstract][Full Text] [Related]
4. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sánchez-Salguero R; Camarero JJ Sci Total Environ; 2020 Jun; 721():137599. PubMed ID: 32172101 [TBL] [Abstract][Full Text] [Related]
5. Fine-scale stand structure mediates drought-induced tree mortality in pinyon-juniper woodlands. Flake SW; Weisberg PJ Ecol Appl; 2019 Mar; 29(2):e01831. PubMed ID: 30548934 [TBL] [Abstract][Full Text] [Related]
6. Slower growth prior to the 2018 drought and a high growth sensitivity to previous year summer conditions predisposed European beech to crown dieback. Neycken A; Wohlgemuth T; Frei ER; Klesse S; Baltensweiler A; Lévesque M Sci Total Environ; 2024 Feb; 912():169068. PubMed ID: 38049004 [TBL] [Abstract][Full Text] [Related]
7. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. McGregor IR; Helcoski R; Kunert N; Tepley AJ; Gonzalez-Akre EB; Herrmann V; Zailaa J; Stovall AEL; Bourg NA; McShea WJ; Pederson N; Sack L; Anderson-Teixeira KJ New Phytol; 2021 Jul; 231(2):601-616. PubMed ID: 33049084 [TBL] [Abstract][Full Text] [Related]
11. Fractal dimension of tree crowns explains species functional-trait responses to urban environments at different scales. Arseniou G; MacFarlane DW Ecol Appl; 2021 Jun; 31(4):e02297. PubMed ID: 33427362 [TBL] [Abstract][Full Text] [Related]
12. Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback. Castellaneta M; Rita A; Camarero JJ; Colangelo M; Ripullone F Sci Total Environ; 2022 Mar; 813():152666. PubMed ID: 34968613 [TBL] [Abstract][Full Text] [Related]
13. Canopy dieback and recovery in Australian native forests following extreme drought. Losso A; Challis A; Gauthey A; Nolan RH; Hislop S; Roff A; Boer MM; Jiang M; Medlyn BE; Choat B Sci Rep; 2022 Dec; 12(1):21608. PubMed ID: 36517498 [TBL] [Abstract][Full Text] [Related]
14. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Zang C; Hartl-Meier C; Dittmar C; Rothe A; Menzel A Glob Chang Biol; 2014 Dec; 20(12):3767-79. PubMed ID: 24838398 [TBL] [Abstract][Full Text] [Related]
15. Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities. McCoy DE; Goulet-Scott B; Meng W; Atahan BF; Kiros H; Nishino M; Kartesz J Elife; 2022 Sep; 11():. PubMed ID: 36165436 [TBL] [Abstract][Full Text] [Related]
16. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Jump AS; Ruiz-Benito P; Greenwood S; Allen CD; Kitzberger T; Fensham R; Martínez-Vilalta J; Lloret F Glob Chang Biol; 2017 Sep; 23(9):3742-3757. PubMed ID: 28135022 [TBL] [Abstract][Full Text] [Related]
17. Drought-induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change? Savi T; Bertuzzi S; Branca S; Tretiach M; Nardini A New Phytol; 2015 Feb; 205(3):1106-1116. PubMed ID: 25354036 [TBL] [Abstract][Full Text] [Related]
18. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Powell TL; Wheeler JK; de Oliveira AAR; da Costa ACL; Saleska SR; Meir P; Moorcroft PR Glob Chang Biol; 2017 Oct; 23(10):4280-4293. PubMed ID: 28426175 [TBL] [Abstract][Full Text] [Related]
19. Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. Klesse S; Wohlgemuth T; Meusburger K; Vitasse Y; von Arx G; Lévesque M; Neycken A; Braun S; Dubach V; Gessler A; Ginzler C; Gossner MM; Hagedorn F; Queloz V; Samblás Vives E; Rigling A; Frei ER Sci Total Environ; 2022 Dec; 851(Pt 1):157926. PubMed ID: 35985592 [TBL] [Abstract][Full Text] [Related]
20. Living on the edge: A continental-scale assessment of forest vulnerability to drought. Peters JMR; López R; Nolf M; Hutley LB; Wardlaw T; Cernusak LA; Choat B Glob Chang Biol; 2021 Aug; 27(15):3620-3641. PubMed ID: 33852767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]