These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35945135)

  • 1. Accelerating the discovery of anticancer peptides targeting lung and breast cancers with the Wasserstein autoencoder model and PSO algorithm.
    Yang L; Yang G; Bing Z; Tian Y; Huang L; Niu Y; Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering Analysis via Deep Generative Models With Mixture Models.
    Yang L; Fan W; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):340-350. PubMed ID: 33048769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Generative Model Based on an Adversarially Regularized Autoencoder.
    Hong SH; Ryu S; Lim J; Kim WY
    J Chem Inf Model; 2020 Jan; 60(1):29-36. PubMed ID: 31820983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Variational Autoencoder Cascade Generative Adversarial Network for Scalable 3D Object Generation and Reconstruction.
    Yu MS; Jung TW; Yun DY; Hwang CG; Park SY; Kwon SC; Jung KD
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-population multi-objective evolutionary algorithm driven by generative adversarial networks for benchmarking and protein-peptide docking.
    Cheng H; Wang GG; Chen L; Wang R
    Comput Biol Med; 2024 Jan; 168():107727. PubMed ID: 38029532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A de novo molecular generation method using latent vector based generative adversarial network.
    Prykhodko O; Johansson SV; Kotsias PC; Arús-Pous J; Bjerrum EJ; Engkvist O; Chen H
    J Cheminform; 2019 Dec; 11(1):74. PubMed ID: 33430938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).
    Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M
    Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data augmentation for enhancing EEG-based emotion recognition with deep generative models.
    Luo Y; Zhu LZ; Wan ZY; Lu BL
    J Neural Eng; 2020 Oct; 17(5):056021. PubMed ID: 33052888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative model based on junction tree variational autoencoder for HOMO value prediction and molecular optimization.
    Kondratyev V; Dryzhakov M; Gimadiev T; Slutskiy D
    J Cheminform; 2023 Feb; 15(1):11. PubMed ID: 36732800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of a Latent Space structure in VAE/GAN trained by navigation data.
    Kojima H; Ikegami T
    Neural Netw; 2022 Aug; 152():234-243. PubMed ID: 35561527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design.
    Song T; Ren Y; Wang S; Han P; Wang L; Li X; Rodriguez-Patón A
    Methods; 2023 Mar; 211():10-22. PubMed ID: 36764588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecule Sequence Generation with Rebalanced Variational Autoencoder Loss.
    Yan C; Yang J; Ma H; Wang S; Huang J
    J Comput Biol; 2023 Jan; 30(1):82-94. PubMed ID: 35972373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention Autoencoder for Generative Latent Representational Learning in Anomaly Detection.
    Oluwasanmi A; Aftab MU; Baagyere E; Qin Z; Ahmad M; Mazzara M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LSTM-Based VAE-GAN for Time-Series Anomaly Detection.
    Niu Z; Yu K; Wu X
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data generation for connected and automated vehicle tests using deep learning models.
    Li Y; Liu F; Xing L; He Y; Dong C; Yuan C; Chen J; Tong L
    Accid Anal Prev; 2023 Sep; 190():107192. PubMed ID: 37379649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic.
    Chow YL; Singh S; Carpenter AE; Way GP
    PLoS Comput Biol; 2022 Feb; 18(2):e1009888. PubMed ID: 35213530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks.
    Karimi M; Zhu S; Cao Y; Shen Y
    J Chem Inf Model; 2020 Dec; 60(12):5667-5681. PubMed ID: 32945673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological magnetic structure generation using VAE-GAN hybrid model and discriminator-driven latent sampling.
    Park SM; Yoon HG; Lee DB; Choi JW; Kwon HY; Won C
    Sci Rep; 2023 Nov; 13(1):20377. PubMed ID: 37989882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.