BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35945157)

  • 1. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting.
    Shi H; Zhang S; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iR5hmcSC: Identifying RNA 5-hydroxymethylcytosine with multiple features based on stacking learning.
    Zhang S; Shi H
    Comput Biol Chem; 2021 Dec; 95():107583. PubMed ID: 34562726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNN-m6A: A Cross-Species Method for Identifying RNA N6-Methyladenosine Sites Based on Deep Neural Network with Multi-Information Fusion.
    Zhang L; Qin X; Liu M; Xu Z; Liu G
    Genes (Basel); 2021 Feb; 12(3):. PubMed ID: 33670877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved residual network using deep fusion for identifying RNA 5-methylcytosine sites.
    Li X; Zhang S; Shi H
    Bioinformatics; 2022 Sep; 38(18):4271-4277. PubMed ID: 35866985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method.
    Jia J; Qin L; Lei R
    Math Biosci Eng; 2023 Mar; 20(6):9759-9780. PubMed ID: 37322910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Prediction of Anti-hypertensive Peptides Based on Convolutional Neural Network and Gated Recurrent unit.
    Shi H; Zhang S
    Interdiscip Sci; 2022 Dec; 14(4):879-894. PubMed ID: 35474167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA.
    Jia J; Qin L; Lei R
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence based model using deep neural network and hybrid features for identification of 5-hydroxymethylcytosine modification.
    Khan S; Uddin I; Khan M; Iqbal N; Alshanbari HM; Ahmad B; Khan DM
    Sci Rep; 2024 Apr; 14(1):9116. PubMed ID: 38643305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep_KsuccSite: A novel deep learning method for the identification of lysine succinylation sites.
    Liu X; Xu LL; Lu YP; Yang T; Gu XY; Wang L; Liu Y
    Front Genet; 2022; 13():1007618. PubMed ID: 36246655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.
    Liu Y; Chen D; Su R; Chen W; Wei L
    Front Bioeng Biotechnol; 2020; 8():227. PubMed ID: 32296686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2Opred: a robust and efficient hybrid deep learning model for predicting 2'-O-methylation sites in human RNA.
    Pham NT; Rakkiyapan R; Park J; Malik A; Manavalan B
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38180830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method.
    Wang L; Yan X; Liu ML; Song KJ; Sun XF; Pan WW
    J Theor Biol; 2019 Jan; 461():230-238. PubMed ID: 30321541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism.
    Cong H; Liu H; Cao Y; Chen Y; Liang C
    Interdiscip Sci; 2022 Jun; 14(2):421-438. PubMed ID: 35066812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepASDPred: a CNN-LSTM-based deep learning method for Autism spectrum disorders risk RNA identification.
    Fan Y; Xiong H; Sun G
    BMC Bioinformatics; 2023 Jun; 24(1):261. PubMed ID: 37349705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional Neural Networks for ATC Classification.
    Lumini A; Nanni L
    Curr Pharm Des; 2018; 24(34):4007-4012. PubMed ID: 30417778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.