These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35945264)

  • 1. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element.
    Momin AA; Mendes T; Barthe P; Faure C; Hong S; Yu P; Kadaré G; Jaremko M; Girault JA; Jaremko Ł; Arold ST
    Commun Biol; 2022 Aug; 5(1):800. PubMed ID: 35945264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-tyrosine kinase CAKbeta/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 alpha2 helix and thus forming its dimer.
    Kohno T; Matsuda E; Sasaki H; Sasaki T
    Biochem J; 2008 Mar; 410(3):513-23. PubMed ID: 18031286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the calcium-dependent regulation of proline-rich tyrosine kinase 2 by gonadotropin-releasing hormone.
    Xie J; Allen KH; Marguet A; Berghorn KA; Bliss SP; Navratil AM; Guan JL; Roberson MS
    Mol Endocrinol; 2008 Oct; 22(10):2322-35. PubMed ID: 18635666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-dependent Pyk2 activation: a role for calmodulin?
    Schaller MD
    Biochem J; 2008 Mar; 410(3):e3-4. PubMed ID: 18290763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Pyk2 FERM regulates Pyk2 complex formation and phosphorylation.
    Riggs D; Yang Z; Kloss J; Loftus JC
    Cell Signal; 2011 Jan; 23(1):288-96. PubMed ID: 20849950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of Pyk2 phosphorylation at Tyr-402 and Tyr-580 in intestinal epithelial cells: roles of calcium, Src, Rho kinase, and the cytoskeleton.
    Wu SS; Jácamo RO; Vong SK; Rozengurt E
    Cell Signal; 2006 Nov; 18(11):1932-40. PubMed ID: 16574377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the tyrosine kinase Pyk2 by calcium is through production of reactive oxygen species in cytotoxic T lymphocytes.
    Lysechko TL; Cheung SM; Ostergaard HL
    J Biol Chem; 2010 Oct; 285(41):31174-84. PubMed ID: 20688918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells.
    Zwick E; Wallasch C; Daub H; Ullrich A
    J Biol Chem; 1999 Jul; 274(30):20989-96. PubMed ID: 10409647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation loop phosphorylation tunes conformational dynamics underlying Pyk2 tyrosine kinase activation.
    Palhano Zanela TM; Woudenberg A; Romero Bello KG; Underbakke ES
    Structure; 2023 Apr; 31(4):447-454.e5. PubMed ID: 36870334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Pyk2 by CaM kinase II in cultured hypothalamic neurons and gonadotroph cells.
    Okitsu-Sakurayama S; Higa-Nakamine S; Torihara H; Takahashi H; Higashiyama S; Yamamoto H
    J Cell Physiol; 2019 May; 234(5):6865-6875. PubMed ID: 30417368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Dynamics of FERM-Mediated Autoinhibition in Pyk2 Tyrosine Kinase.
    Loving HS; Underbakke ES
    Biochemistry; 2019 Sep; 58(36):3767-3776. PubMed ID: 31403288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pyk2 FERM domain as a target to inhibit glioma migration.
    Loftus JC; Yang Z; Tran NL; Kloss J; Viso C; Berens ME; Lipinski CA
    Mol Cancer Ther; 2009 Jun; 8(6):1505-14. PubMed ID: 19509258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration.
    Sieg DJ; Ilić D; Jones KC; Damsky CH; Hunter T; Schlaepfer DD
    EMBO J; 1998 Oct; 17(20):5933-47. PubMed ID: 9774338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and calmodulin binding.
    Shani G; Henis-Korenblit S; Jona G; Gileadi O; Eisenstein M; Ziv T; Admon A; Kimchi A
    EMBO J; 2001 Mar; 20(5):1099-113. PubMed ID: 11230133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Role of Src in Priming Pyk2 Phosphorylation.
    Zhao M; Finlay D; Zharkikh I; Vuori K
    PLoS One; 2016; 11(2):e0149231. PubMed ID: 26866924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PYK2: a calcium-sensitive protein tyrosine kinase activated in response to fertilization of the zebrafish oocyte.
    Sharma D; Kinsey WH
    Dev Biol; 2013 Jan; 373(1):130-40. PubMed ID: 23084926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic insights into the interaction between Pyk2 and paxillin LD motifs.
    Vanarotti MS; Miller DJ; Guibao CD; Nourse A; Zheng JJ
    J Mol Biol; 2014 Dec; 426(24):3985-4001. PubMed ID: 25174335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration.
    Lipinski CA; Tran NL; Dooley A; Pang YP; Rohl C; Kloss J; Yang Z; McDonough W; Craig D; Berens ME; Loftus JC
    Biochem Biophys Res Commun; 2006 Oct; 349(3):939-47. PubMed ID: 16962067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD44-mediated elongated T cell spreading requires Pyk2 activation by Src family kinases, extracellular calcium, phospholipase C and phosphatidylinositol-3 kinase.
    Wong NK; Lai JC; Maeshima N; Johnson P
    Cell Signal; 2011 May; 23(5):812-9. PubMed ID: 21238585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2.
    Lulo J; Yuzawa S; Schlessinger J
    Biochem Biophys Res Commun; 2009 Jun; 383(3):347-52. PubMed ID: 19358827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.