These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35945600)

  • 1. Fused ultrasound and electromyography-driven neuromuscular model to improve plantarflexion moment prediction across walking speeds.
    Zhang Q; Fragnito N; Franz JR; Sharma N
    J Neuroeng Rehabil; 2022 Aug; 19(1):86. PubMed ID: 35945600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plantarflexion Moment Prediction during the Walking Stance Phase with an sEMG-Ultrasound Imaging-Driven Model.
    Zhang Q; Fragnito N; Myers A; Sharma N
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6267-6272. PubMed ID: 34892546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning method to predict ankle joint moment during walking at different speeds with ultrasound imaging: A framework for assistive devices control.
    Zhang Q; Fragnito N; Bao X; Sharma N
    Wearable Technol; 2022; 3():e20. PubMed ID: 38486894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Non-Invasive Ankle Joint Effort Prediction Methods for Use in Neurorehabilitation Using Electromyography and Ultrasound Imaging.
    Zhang Q; Iyer A; Kim K; Sharma N
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1044-1055. PubMed ID: 32759078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography and Electromyography.
    Zhang Q; Kim K; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):318-327. PubMed ID: 31725385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isometric Plantarflexion Moment Prediction Based on a Compartment-Specific HD-sEMG-Driven Musculoskeletal Model.
    Zheng M; Lu P; Wu W; Song R
    IEEE Trans Biomed Eng; 2024 Aug; 71(8):2311-2320. PubMed ID: 38381630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual-Modal Approach Using Electromyography and Sonomyography Improves Prediction of Dynamic Ankle Movement: A Case Study.
    Zhang Q; Iyer A; Sun Z; Kim K; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1944-1954. PubMed ID: 34428143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eversion Strength and Surface Electromyography Measures With and Without Chronic Ankle Instability Measured in 2 Positions.
    Donnelly L; Donovan L; Hart JM; Hertel J
    Foot Ankle Int; 2017 Jul; 38(7):769-778. PubMed ID: 28391722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.
    Honert EC; Zelik KE
    PLoS One; 2016; 11(10):e0163169. PubMed ID: 27764110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry.
    Meyer AJ; Patten C; Fregly BJ
    PLoS One; 2017; 12(7):e0179698. PubMed ID: 28700708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of bodyweight support and guidance force on muscle activation during Locomat walking in people with stroke: a cross-sectional study.
    Lin J; Hu G; Ran J; Chen L; Zhang X; Zhang Y
    J Neuroeng Rehabil; 2020 Jan; 17(1):5. PubMed ID: 31931825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
    Zhang S; Yu N; Guo Z; Huo W; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4703-4712. PubMed ID: 38015663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model.
    Xiong B; Zeng N; Li Y; Du M; Huang M; Shi W; Mao G; Yang Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098065
    [No Abstract]   [Full Text] [Related]  

  • 19. Contribution of the peroneus longus neuromuscular compartments to eversion and plantarflexion of the ankle.
    Mendez-Rebolledo G; Guzmán-Venegas R; Valencia O; Watanabe K
    PLoS One; 2021; 16(4):e0250159. PubMed ID: 33857199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achilles Tendon Load is Progressively Increased with Reductions in Walking Speed.
    Brauner T; Pourcelot P; Crevier-Denoix N; Horstmann T; Wearing SC
    Med Sci Sports Exerc; 2017 Oct; 49(10):2001-2008. PubMed ID: 28509763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.