These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35946164)

  • 1. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks.
    Ebrahimi S; Bagchi P
    J R Soc Interface; 2022 Aug; 19(193):20220306. PubMed ID: 35946164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.
    Ebrahimi S; Bagchi P
    Sci Rep; 2022 Mar; 12(1):4304. PubMed ID: 35277592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting capillary vessel network hemodynamics in silico by machine learning.
    Ebrahimi S; Bagchi P
    PNAS Nexus; 2024 Feb; 3(2):pgae043. PubMed ID: 38725529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary module haemodynamics and mechanisms of blood flow regulation in skeletal muscle capillary networks: Experimental and computational analysis.
    Mendelson AA; Ho E; Scott S; Vijay R; Hunter T; Milkovich S; Ellis CG; Goldman D
    J Physiol; 2022 Apr; 600(8):1867-1888. PubMed ID: 35067970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The capillary fascicle in skeletal muscle: Structural and functional physiology of RBC distribution in capillary networks.
    Mendelson AA; Milkovich S; Hunter T; Vijay R; Choi YH; Milkovich S; Ho E; Goldman D; Ellis CG
    J Physiol; 2021 Apr; 599(8):2149-2168. PubMed ID: 33595111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice.
    Santisakultarm TP; Cornelius NR; Nishimura N; Schafer AI; Silver RT; Doerschuk PC; Olbricht WL; Schaffer CB
    Am J Physiol Heart Circ Physiol; 2012 Apr; 302(7):H1367-77. PubMed ID: 22268102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of flow and red cell flux in the microcirculation.
    Gaehtgens P
    Scand J Clin Lab Invest Suppl; 1981; 156():83-7. PubMed ID: 7034151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of red blood cell dynamics in microvessel bifurcations on the endothelial surface layer's resistance to flow and compression.
    Triebold C; Barber J
    Biomech Model Mechanobiol; 2022 Jun; 21(3):771-796. PubMed ID: 35146594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell lingering modulates hematocrit distribution in the microcirculation.
    Rashidi Y; Simionato G; Zhou Q; John T; Kihm A; Bendaoud M; Krüger T; Bernabeu MO; Kaestner L; Laschke MW; Menger MD; Wagner C; Darras A
    Biophys J; 2023 Apr; 122(8):1526-1537. PubMed ID: 36932676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of vessel diameter on red cell distribution at microvascular bifurcations.
    Carr RT; Wickham LL
    Microvasc Res; 1991 Mar; 41(2):184-96. PubMed ID: 2051959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal profile of rat skeletal muscle capillary haemodynamics during recovery from contractions.
    Ferreira LF; Padilla DJ; Musch TI; Poole DC
    J Physiol; 2006 Jun; 573(Pt 3):787-97. PubMed ID: 16581868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the linear stability of blood flow through model capillary networks.
    Davis JM
    Bull Math Biol; 2014 Dec; 76(12):2985-3015. PubMed ID: 25410686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.