These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 3594658)
1. Development of a tablet excipient from bagasse. Padmadisastra Y; Sawayanagi Y; Nagai T; Gonda I Chem Pharm Bull (Tokyo); 1987 Jan; 35(1):289-93. PubMed ID: 3594658 [No Abstract] [Full Text] [Related]
2. Preliminary studies of the development of a direct compression cellulose excipient from bagasse. Padmadisastra Y; Gonda I J Pharm Sci; 1989 Jun; 78(6):508-14. PubMed ID: 2760828 [TBL] [Abstract][Full Text] [Related]
3. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
4. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Rahman Z; Zidan AS; Korang-Yeboah M; Yang Y; Siddiqui A; Shakleya D; Khan MA; Cruz C; Ashraf M Int J Pharm; 2017 Jan; 517(1-2):303-311. PubMed ID: 27956191 [TBL] [Abstract][Full Text] [Related]
5. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration. Yang B; Wei C; Yang Y; Wang Q; Li S Drug Dev Ind Pharm; 2018 Sep; 44(9):1417-1425. PubMed ID: 29557692 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: a technical note. Bhimte NA; Tayade PT AAPS PharmSciTech; 2007 Feb; 8(1):8. PubMed ID: 17408230 [No Abstract] [Full Text] [Related]
7. Evaluation of cellulose II powders as a potential multifunctional excipient in tablet formulations. de la Luz Reus Medina M; Kumar V Int J Pharm; 2006 Sep; 322(1-2):31-5. PubMed ID: 16828996 [TBL] [Abstract][Full Text] [Related]
8. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
9. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile. Hosseini A; Körber M; Bodmeier R Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Fillers and Binders on the Accuracy of Tablet Subdivision. Pereira GRS; Taveira SF; Cunha-Filho M; Marreto RN AAPS PharmSciTech; 2018 Oct; 19(7):2929-2933. PubMed ID: 30120694 [TBL] [Abstract][Full Text] [Related]
11. Study of drug release and tablet characteristics of silicone adhesive matrix tablets. Tolia G; Li SK Eur J Pharm Biopharm; 2012 Nov; 82(3):518-25. PubMed ID: 22820648 [TBL] [Abstract][Full Text] [Related]
12. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069 [TBL] [Abstract][Full Text] [Related]
13. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Chen L; He Z; Kunnath KT; Fan S; Wei Y; Ding X; Zheng K; Davé RN Int J Pharm; 2019 Feb; 557():354-365. PubMed ID: 30597273 [TBL] [Abstract][Full Text] [Related]
14. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Huang Z; Scicolone JV; Han X; Davé RN Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016 [TBL] [Abstract][Full Text] [Related]
15. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression. Chaheen M; Sanchez-Ballester NM; Bataille B; Yassine A; Belamie E; Sharkawi T J Pharm Sci; 2018 Aug; 107(8):2152-2159. PubMed ID: 29698724 [TBL] [Abstract][Full Text] [Related]
16. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy. Awa K; Shinzawa H; Ozaki Y Appl Spectrosc; 2014; 68(6):625-32. PubMed ID: 25014717 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of cyclodextrin polymer as an additive for furosemide tablet. Fenyvesi E; Takayama K; Szejtli J; Nagai T Chem Pharm Bull (Tokyo); 1984 Feb; 32(2):670-7. PubMed ID: 6733813 [No Abstract] [Full Text] [Related]
18. A formulation strategy for solving the overgranulation problem in high shear wet granulation. Osei-Yeboah F; Zhang M; Feng Y; Sun CC J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120 [TBL] [Abstract][Full Text] [Related]
19. Cyclodextrin polymer, a new tablet disintegrating agent. Fenyvest E; Antal B; Zsadon B; Szejtli J Pharmazie; 1984 Jul; 39(7):473-5. PubMed ID: 6494226 [TBL] [Abstract][Full Text] [Related]
20. Denatured Whey Protein Powder as a New Matrix Excipient: Design and Evaluation of Mucoadhesive Tablets for Sustained Drug Release Applications. Hsein H; Garrait G; Tamani F; Beyssac E; Hoffart V Pharm Res; 2017 Feb; 34(2):365-377. PubMed ID: 28004316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]