BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35946807)

  • 1. Manual stabilization reveals a transient role for balance control during locomotor adaptation.
    Park S; Finley JM
    J Neurophysiol; 2022 Oct; 128(4):808-818. PubMed ID: 35946807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handrail Holding During Treadmill Walking Reduces Locomotor Learning in Able-Bodied Persons.
    Buurke TJW; Lamoth CJC; van der Woude LHV; den Otter R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1753-1759. PubMed ID: 31425041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
    Stenum J; Choi JT
    J Physiol; 2020 Sep; 598(18):4063-4078. PubMed ID: 32662881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric gait patterns alter the reactive control of intersegmental coordination patterns in the sagittal plane during walking.
    Liu C; Finley JM
    PLoS One; 2020; 15(5):e0224187. PubMed ID: 32437458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Step length symmetry adaptation to split-belt treadmill walking after acquired non-traumatic transtibial amputation.
    Kline PW; Murray AM; Miller MJ; So N; Fields T; Christiansen CL
    Gait Posture; 2020 Jul; 80():162-167. PubMed ID: 32516682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
    Price M; Huber ME; Hoogkamer W
    J Neurophysiol; 2023 Apr; 129(4):900-913. PubMed ID: 36883759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting gait with asymmetric visual feedback affects deadaptation but not adaptation in healthy young adults.
    Brinkerhoff SA; Monaghan PG; Roper JA
    PLoS One; 2021; 16(2):e0247706. PubMed ID: 33630934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing dynamic balance during adaptive locomotor learning.
    Park S; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():50-53. PubMed ID: 29059808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taking advantage of external mechanical work to reduce metabolic cost: the mechanics and energetics of split-belt treadmill walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Physiol; 2019 Aug; 597(15):4053-4068. PubMed ID: 31192458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor adaptation and locomotor adaptive learning in Parkinson's disease and normal aging.
    Roemmich RT; Nocera JR; Stegemöller EL; Hassan A; Okun MS; Hass CJ
    Clin Neurophysiol; 2014 Feb; 125(2):313-9. PubMed ID: 23916406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Biofeedback to Reduce Step Length Asymmetry Impairs Dynamic Balance in People Poststroke.
    Park S; Liu C; Sánchez N; Tilson JK; Mulroy SJ; Finley JM
    Neurorehabil Neural Repair; 2021 Aug; 35(8):738-749. PubMed ID: 34060926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive control of dynamic balance in human gait on a split-belt treadmill.
    Buurke TJW; Lamoth CJC; Vervoort D; van der Woude LHV; den Otter R
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29773683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitual exercise evokes fast and persistent adaptation during split-belt walking.
    Brinkerhoff SA; Sánchez N; Roper JA
    PLoS One; 2023; 18(6):e0286649. PubMed ID: 37267314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using asymmetry to your advantage: learning to acquire and accept external assistance during prolonged split-belt walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Neurophysiol; 2021 Feb; 125(2):344-357. PubMed ID: 33296612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering attention to split-belt walking increases the generalization of motor memories across walking contexts.
    Mariscal DM; Iturralde PA; Torres-Oviedo G
    J Neurophysiol; 2020 May; 123(5):1838-1848. PubMed ID: 32233897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Human Neural Control of Short-term Gait Adaptation to the Split-belt Treadmill.
    Hinton DC; Conradsson DM; Paquette C
    Neuroscience; 2020 Dec; 451():36-50. PubMed ID: 33039522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking.
    Jacobsen NA; Ferris DP
    J Physiol; 2023 Sep; 601(17):3921-3944. PubMed ID: 37522890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint-level coordination patterns for split-belt walking across different speed ratios.
    Kambic RE; Roemmich RT; Bastian AJ
    J Neurophysiol; 2023 May; 129(5):969-983. PubMed ID: 36988216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.