These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35946807)

  • 21. Associations between asymmetry and reactive balance control during split-belt walking.
    Cornwell T; Novotny R; Finley JM
    J Biomech; 2024 Jul; 172():112221. PubMed ID: 38972274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Split-Belt Treadmill Adaptation Improves Spatial and Temporal Gait Symmetry in People with Multiple Sclerosis.
    Hagen AC; Acosta JS; Geltser CS; Fling BW
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active arm swing and asymmetric walking leads to increased variability in trunk kinematics in young adults.
    Siragy T; Mezher C; Hill A; Nantel J
    J Biomech; 2020 Jan; 99():109529. PubMed ID: 31839359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.
    Vasudevan EVL; Hamzey RJ; Kirk EM
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic stability during split-belt walking and the relationship with step length symmetry.
    Darter BJ; Labrecque BA; Perera RA
    Gait Posture; 2018 May; 62():86-91. PubMed ID: 29533870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique characteristics of motor adaptation during walking in young children.
    Musselman KE; Patrick SK; Vasudevan EV; Bastian AJ; Yang JF
    J Neurophysiol; 2011 May; 105(5):2195-203. PubMed ID: 21368001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The choice of reference point for computing sagittal plane angular momentum affects inferences about dynamic balance.
    Liu C; Park S; Finley J
    PeerJ; 2022; 10():e13371. PubMed ID: 35582618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mode-dependent control of human walking and running as revealed by split-belt locomotor adaptation.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    J Exp Biol; 2015 Oct; 218(Pt 20):3192-8. PubMed ID: 26276863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concurrent locomotor adaptation and retention to visual and split-belt perturbations.
    Kim SJ; Howsden S; Bartels N; Lee H
    PLoS One; 2022; 17(12):e0279585. PubMed ID: 36584009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow.
    Mahon CE; Hendershot BD; Gaskins C; Hatfield BD; Shaw EP; Gentili RJ
    Exp Brain Res; 2023 Jul; 241(7):1945-1958. PubMed ID: 37358569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.
    Stone AE; Roper JA; Herman DC; Hass CJ
    Neurorehabil Neural Repair; 2018 Jun; 32(6-7):568-577. PubMed ID: 29779423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.