These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35946807)

  • 61. Split-belt walking: An experience that is hard to forget.
    Buurke TJW; Sharma N; Swart SB; van der Woude LHV; den Otter R; Lamoth CJC
    Gait Posture; 2022 Sep; 97():184-187. PubMed ID: 35986959
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparing aftereffects after split-belt treadmill walking and unilateral stepping.
    Huynh KV; Sarmento CH; Roemmich RT; Stegemöller EL; Hass CJ
    Med Sci Sports Exerc; 2014 Jul; 46(7):1392-9. PubMed ID: 24389526
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill.
    Gregory DL; Sup FC; Choi JT
    R Soc Open Sci; 2021 Feb; 8(2):202084. PubMed ID: 33972880
    [TBL] [Abstract][Full Text] [Related]  

  • 64. How does the motor system correct for errors in time and space during locomotor adaptation?
    Malone LA; Bastian AJ; Torres-Oviedo G
    J Neurophysiol; 2012 Jul; 108(2):672-83. PubMed ID: 22514294
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamic visual acuity during asymmetric walking.
    Napoli CD; Hamill J; Hoogkamer W; van Emmerik R
    Hum Mov Sci; 2022 Oct; 85():102998. PubMed ID: 36108484
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Locomotor adaptation is influenced by the interaction between perturbation and baseline asymmetry after stroke.
    Tyrell CM; Helm E; Reisman DS
    J Biomech; 2015 Aug; 48(11):2849-57. PubMed ID: 25935688
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Muscle contributions to whole-body sagittal plane angular momentum during walking.
    Neptune RR; McGowan CP
    J Biomech; 2011 Jan; 44(1):6-12. PubMed ID: 20833396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects.
    Jansen K; De Groote F; Duysens J; Jonkers I
    Gait Posture; 2013 Sep; 38(4):739-44. PubMed ID: 23597940
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
    Tesio L; Malloggi C; Malfitano C; Coccetta CA; Catino L; Rota V
    Int J Rehabil Res; 2018 Dec; 41(4):304-315. PubMed ID: 30303831
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interlimb coordination during locomotion: what can be adapted and stored?
    Reisman DS; Block HJ; Bastian AJ
    J Neurophysiol; 2005 Oct; 94(4):2403-15. PubMed ID: 15958603
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.
    Yokoyama H; Sato K; Ogawa T; Yamamoto SI; Nakazawa K; Kawashima N
    PLoS One; 2018; 13(4):e0194875. PubMed ID: 29694404
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Split-belt locomotion in Parkinson's disease with and without freezing of gait.
    Nanhoe-Mahabier W; Snijders AH; Delval A; Weerdesteyn V; Duysens J; Overeem S; Bloem BR
    Neuroscience; 2013 Apr; 236():110-6. PubMed ID: 23370318
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spatiotemporal characteristics of locomotor adaptation of walking with two handheld poles.
    Obata H; Ogawa T; Yokoyama H; Kaneko N; Nakazawa K
    Exp Brain Res; 2020 Dec; 238(12):2973-2982. PubMed ID: 33074403
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Walking through the looking glass: Adapting gait patterns with mirror feedback.
    Stone AE; Terza MJ; Raffegeau TE; Hass CJ
    J Biomech; 2019 Jan; 83():104-109. PubMed ID: 30503256
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Split-belt treadmill adaptation shows different functional networks for fast and slow human walking.
    Vasudevan EV; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):183-91. PubMed ID: 19889853
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Learning to be economical: the energy cost of walking tracks motor adaptation.
    Finley JM; Bastian AJ; Gottschall JS
    J Physiol; 2013 Feb; 591(4):1081-95. PubMed ID: 23247109
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Whole-body and segment angular momentum during 90-degree turns.
    Nolasco LA; Silverman AK; Gates DH
    Gait Posture; 2019 May; 70():12-19. PubMed ID: 30776765
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force.
    Vazquez A; Statton MA; Busgang SA; Bastian AJ
    J Neurophysiol; 2015 Dec; 114(6):3255-67. PubMed ID: 26424576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.